Unit II

Root-Finding and Nonlinear Systems

- strategy and tactics
- fixed-point iteration
- bracketing and bisection
- interpolation methods
- Newton's method
- special tactics for polynomials
- nonlinear systems
- fixed point iteration
- Newton-Rhapson method

Numerical equation solving

- an equation that needs a solution can be written in the form $f(x)=0$
- so 'finding roots' covers ALL types of equations
- there are single-variable problems ...
- a one-dimensional problem or one independent variable
- there are many, [often] straightforward, methods available but....
- some pitfalls still need careful avoidance tactics
- and there are multi-variable problems ...
- these are a very different battlefield
- they are MUCH more difficult and DEMAND insight

Single-variable (nonlinear) equations

- location(s) of root(s) can be determined/estimated
- roots can be trapped and hunted down
- all nonlinear methods are based on iteration
- one good reason for studying Jacobi and Gauss-Seidel
- proceed from an approximate trial solution until some convergence criterion is met
- convergence speed and success can be quantified to some extent
- for smooth functions a good algorithm will always succeed given a good enough initial guess

Hamming* said....

'The purpose of computing is insight not numbers'

Insight

- with a nonlinear problem insight can be critical simply to avoid total failure
- black box + nonlinear problems = a bad combination
- algorithms may fail because ...
- they find a highly accurate, but totally incorrect, root
- there is no root to find but they find one anyway
- they fail to find a root because the initial guess was too far away

Three pieces of strategic advice

1. Examine the function graphically.

- to locate roughly where the roots are and how many there may be
- curve sketching is one way or...
- best: use a Matlab plot to get the lay of the land

2. ALWAYS ALWAYS ALWAYS bracket a root.

- find a range of x-values over which the function changes sign

3. Keep your iterations on a leash inside the bracketing interval.

- unless you like to live dangerously

Bracketing a root

- a root is bracketed in the interval (a, b) if $f(a)$ and $f(b)$ have different signs
- a continuous function
- is guaranteed to have at least one root in the interval (a, b)
- remember the intermediate value theorem?
- a discontinuous function
- may have a step inside the interval (a,b)
- numerically these statements are not so clear
- a continuous function may have a floating point 'step' where the root is supposed to be
- the zero can occur between two floating point numbers which are adjacent to machine precision (in the hole) systems

Extremum complication

- 'walk downhill until you hit a sign change'
- doesn't work if there is
- an extremum point (local max or min) or
- a multiple root

Singularities

- if $f(x) \rightarrow \infty$ at $x=r$ inside (a, b) most algorithms will converge to the singularity
- detecting this pathology is easy
- check $|f(r)|$ and observe that it is very large instead of close to zero as it should be near a root
- it's difficult to bracket roots for blackbox functions because you need a feeling for shape and characteristics

Bracketing a singularity

A pathological function with many roots

Refining a root

- a root can be refined iteratively once it is trapped inside the bracketing interval
- some methods are slow but sure (safe investments)
- you know you will always find the root
- convergence efficiency may be very weak
- other methods are fast but risky (stock market)
- you can rapidly disappear to infinity without any warning
- counter measures can make them safer

Fixed-point iteration

- to solve $f(x)=0$ re-express the equation in the form: $x=g(x)$
- use this to derive the iteration expression

$$
x_{\text {new }}=g\left(x_{\text {old }}\right)
$$

- why learn this method?
- it is simple and easily applied in hand calculations
- provides an important theoretical framework for analysing numerical root-finding techniques of all kinds
- can be generalized to nonlinear systems for which there is a dearth of methods

Fixed-point iteration: example

Find the roots of $f(x)=x-x^{1 / 3}-2$ using three different fixedpoint iteration functions:

- $g_{1}(x)=x^{1 / 3}+2$
- $g_{2}(x)=\left(6+2 x^{1 / 3}\right) /\left(3-x^{-2 / 3}\right)$
- $g_{3}(x)=(x-2)^{3}$

Fixed-point iteration: convergence

- in the example
- $\quad g_{1}(x)$ converges slowly [7 digits/9 iterations]
- $g_{2}(x)$ converges quickly [11 digits/3 iterations]
- $g_{3}(x)$ always diverges regardless of the initial root guess
- fixed-point iteration will converge to a root in the interval $[a, b]$ if
- $\quad[a, b]$ contains a root
- $\left|g^{\prime}(x)\right|<1$ on $[a, b]$
- the iterations
- oscillate around the root if $-1<g^{\prime}(x)<0$
- converge monotonically if $0<\mathrm{g}^{\prime}(\mathrm{x})<1$

Bisection

- one of the safest methods
- always finds a root once it is bracketed inside (a,b)
- if there is more than one root the method converges to one of them
- converges to a singularity if there is one in (a,b)
- check the function at the midpoint m of (a, b)
- determine which half-interval has the sign change
- either (a, m) or (m, b)
- repeat with the half-interval

Two practical issues with bisection

1. Evaluation of the midpoint

- $\quad m=(a+b) / 2$ can lead to roundoff problems
- $\quad m=a+(b-a) / 2$ is better

2. Checking for a sign change

- the test ' $\mathrm{f}(\mathrm{a})^{*} \mathrm{f}(\mathrm{b})<0$?' is susceptible to underflow
- better to use the exact test 'sign(f(a)) ~= sign(f(b))'? based on the floating point sign bit
- Matlab has a built-in sign function for this
- [see brackPlot illustrative function m-file]

Bisection: Matlab*

- demoBisect illustrate bisection with $f(x)=x-x^{1 / 3}-2$ [slide 16]
- brackPlot can be used to locate the initial bracketing intervals
- bisect is a general implementation of the bisection method to find multiple roots

Convergence rate

- after n iterations the root lies in an interval size δ_{n} $\delta_{n}=\delta_{n-1} / 2=\ldots=\delta_{0} / 2^{n}$
where $\delta_{0}=\mathrm{b}-\mathrm{a}$ is the initial bracketing interval size
- to achieve a tolerance of δ therefore requires n iterations where

$$
n=\log _{2}\left(\delta_{n} / \delta_{0}\right)
$$

- for $\mathrm{n}=50$ we have $\delta_{\mathrm{n}} / \delta_{0} \sim$ eps so maximum number of iterations ever required with bisection is about 50

Convergence rates for iterative processes

- suppose a process coverges so the successive levels of uncertainty are given by

$$
\delta_{n+1}=k \delta_{n}{ }^{m}
$$

(with the $\mathrm{k}<1$)

- the method is said to converge
- linearly if $\mathrm{m}=1$ (like the bisection method)
- super-linearly if $m>1$
- 'linear' convergence is a misnomer
- it is really geometric convergence
- the 'linear' means that successive significant digits are won linearly

Convergence criteria

- in floating point arithmetic $f(x)$ is unlikely to evaluate to zero even if there is an obvious root available (roundoff error)
- so we need a test to stop the iterative process
- can check tolerance on
- x iterates and/or....
- $f(x)$ iterates
- some tolerance checks:
- absolute test ... ok near 1 but stupid near 10^{40}
- relative test ... not feasible near zero
- hybrid test ... tol $<\varepsilon_{\mathrm{m}}(|a|+|b|) / 2$
- backup test is also good (e.g. limit on max \# iterations)

Interpolation methods

- based on local approximation of a smooth function near a root
- linear (secant, regula falsi)
- quadratic (Brent's method)
- converge faster than bisection
- the next approximate root is found where the interpolating function intersects the x-axis
- replaces one of the two endpoints of the iteration interval
- which endpoint should we choose?

Regula falsi method

- next estimate is based on maintaining a sign-change bracketing in the interval

Secant method: issues

- converges faster than regula falsi but
- convergence is not guaranteed because signchange bracketing is not maintained
- secant method is superlinear with convergence power the golden ratio ($\phi \sim 1.618$)
- problems with divergence can occur for insufficiently continuous functions due to local behaviour

Pathological example

Secant method: practicalities

- previous estimates for the root are $x_{k-1} \& x_{k}$
- new estimate x_{k+1} is found using
- simple linear equation formula and
- find the x-intercept:

$$
x_{k+1}=x_{k}-f\left(x_{k}\right)\left[\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right]
$$

- this formula is good numerically because ...
$-\quad$ it is $x_{k+1}=x_{k}+\Delta$
- as $f\left(x_{k}\right)-f\left(x_{k-1}\right)$ gets close to zero it accumulates roundoff
- but Δ will still be small because $f\left(x_{k}\right)$ is close to zero
- so the change in x_{k} close to the root is small as it should be
-so-good algebraic re-arrangement is

$$
x_{k+1}=\frac{f\left(x_{k}\right) x_{k-1}-f\left(x_{k-1}\right) x_{k}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}
$$

- same mathematically but not as good numerically
- subject to catastrophic cancellation as successive $f\left(x_{k}\right)$ values get close
- subject to underflow as $|f(x)| \rightarrow 0$

Root-finding by linear interpolation

- secant and regula falsi methods based on linear interpolation of $f(x)$ within the current iteration interval (a, b) and sub-intervals
- these are two-point methods since the approximation is with respect to an interval
- typically faster convergence than bisection
- for pathological functions (e.g. not smooth, or smooth with rapidly changing second derivative) bisection may actually be faster
- linear approximation methods may proceed slowly through many cycles to get close to the root

Root finding by quadratic interpolation

- a more rapid convergence than linear methods
- use quadratic interpolation in the iteration intervals
- interpolation requires three points ($\mathrm{a}, \mathrm{f}(\mathrm{a})$), (b,f(b)) and ($\mathrm{c}, \mathrm{f}(\mathrm{c})$) on the graph of the function
- the required quadratic should give x in terms of y, since an x-value (i.e. the root) is being estimated (i.e. when $y=0$)
- i.e. this is inverse quadratic interpolation
- this topic comes in Unit III but is easy enough

Brent's method

- the best all-round method [not in text]
- combines the speed of a superlinear quadratic interpolation with the safeness of bisection
- guaranteed to find a root, as long as the function can be evaluated in the initial bracketing interval
- book-keeping checks that the root estimate falls in the bracketing interval
_ if not the quadratic step is rejected
- a bisection step is interspersed to bring the root back on side
- a bisection step can also be introduced if the convergence is proceeding too slowly
- easy to see how this function is constructed to satisfy the three given points
- for the three points given previously, the inverse quadratic interpolation is given by:

$$
\begin{aligned}
x= & \frac{[y-f(a)][y-f(b)] c}{[f(c)-f(a)][f(c)-f(b)]}+\frac{[y-f(b)][y-f(c)] a}{[f(a)-f(b)][f(a)-f(c)]} \\
& +\frac{[y-f(c)][y-f(a)] b}{[f(b)-f(c)][f(b)-f(a)]}
\end{aligned}
$$

Brent's method: practicalities

- put $y=0$ and solve for x
- simple algebra (or substitute and check) gives the new estimate: $x=b+p / q$

$$
\begin{aligned}
r & =f(b) / f(c) \\
s & =f(b) / f(a) \\
t & =f(a) / f(c) \\
p & =s[t(r-t)(c-b)-(1-r)(b-a)] \\
q & =(t-1)(r-1)(s-1)
\end{aligned}
$$

Brent's method: practicalities

- in $x=b+p / q$ the b term is the current best estimate for the root and p / q is supposed to be a small correction factor
- if f is not smooth then q may turn out to be very small, pulling x outside the bounds
- then you take a bisection step
- Matlab function for root-finding is based on Brent: fzero(fun, x0, options, arg1, arg2, ...)
- fun = (string) name of the function to be evaluated
- $\quad x 0=$ scalar starting point or vector root bracket
- options = tolerances etc
- arg1 etc = parameters to be passed to fun

Newton's method

- previous methods require only the function's values to be evaluated at points in the bracketing interval
- a faster convergence can be obtained if both the function $f(x)$ and its derivative $f^{\prime}(x)$ can be evaluated for arbitrary $x \in(a, b)$
- for practical reasons this means the symbolic forms of $f(x)$ and $f^{\prime}(x)$ should be available, not just values
- (geometrically) consists of extending the tangent line to $f(x)$ at the current x_{i} to its x-intercept x_{i+1} which becomes the next root estimate

Newton's method

Unit II - Root-finding and nonlinear
systems

Newton's method: algebraic reasoning

- take the Taylor series expansion of f about x :

$$
f(x+\delta) \approx f(x)+f^{\prime}(x) \delta+\frac{f^{\prime \prime}(x)}{2} \delta^{2}+\ldots
$$

- drop the second-order and higher terms to get the linear approximation of f near x :

$$
f(x+\delta) \approx f(x)+f^{\prime}(x) \delta
$$

- for small enough δ and well-behaved $f(x)$ approximate the required root putting $f(x+\delta)=0$
- get the famous Newton formula: $\boldsymbol{\delta =} \mathbf{=} \mathbf{f}(\mathbf{x}) / \mathbf{f}^{\prime}(\mathbf{x})$
- this tells you that: $x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)$
- a good initial guess is critical for success
- if too far from the true root the neglected higher-order terms in the Taylor expansion ARE important
- root estimate may lead far from the true root
- very inaccurate and meaningless corrections δ are calculated
- problems are compounded for functions that are not smooth near the root
- a local method based on a single point with no intrinsic root bracketing (risky stuff)
- bracketing bounds can be introduced to avoid shooting off to infinity

Newton pathology: non-convergent cycle

Unit II - Root-finding and nonlinear
systems

Newton convergence

- Taylor expansion of $f(x)$ about the exact root α gives

$$
0=f(\alpha)=f\left(x_{i}\right)+\left(\alpha-x_{i}\right) f^{\prime}\left(x_{i}\right)+\frac{\left(\alpha-x_{i}\right)^{2}}{2} f^{\prime \prime}\left(x_{i}\right)+\cdots
$$

- the (i+1)th error term is

$$
\begin{aligned}
\varepsilon_{i+1} & =x_{i+1}-\alpha \\
& =\left(x_{i}-\alpha\right)-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad \text { using the Newton formula } \\
& =\left(x_{i}-\alpha\right)+\frac{\left(\alpha-x_{i}\right) f^{\prime}\left(x_{i}\right)+\frac{\left(\alpha-x_{i}\right)^{2}}{2} f^{\prime \prime}\left(x_{i}\right)+\cdots}{f^{\prime}\left(x_{i}\right)} \\
& \approx \frac{\left(\alpha-x_{i}\right)^{2}}{2} \frac{f^{\prime \prime}\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

Newton convergence

$$
\varepsilon_{i+1} \approx \frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)} \varepsilon_{i}^{2}
$$

- so Newton is superlinear since $\varepsilon_{i+1} \approx \varepsilon_{i}^{2}$
- faster convergence rate than previous methods
- quadratic convergence means significant figures are approx. DOUBLED with each iteration
provided you are near a root [the payback]
- terminate iterations when
- the increment $\left|f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)\right|<$ tol or
- $\left|f\left(x_{i+1}\right)\right|>\left|f\left(x_{i}\right)\right|$

Toward polynomial roots: finding square roots

Newton: unpredictable global convergence

- consider the set of starting values from which Newton converges to a root
- for example $z^{3}-1=0$ has one real root $z=1$ and two complex roots $z=\exp (\pm 2 \pi i / 3)$
- basins of convergence (starting points which converge to one of these roots) occupy $1 / 3$ of the complex plane but....
- the boundary is a fractal
- see http://www.math.hawaii.edu/lab/newton.html
- use Newton to solve $f(x)=x^{2}-a=0$:

$$
\begin{array}{r}
x_{i+1}=x_{i}-\left(x_{i}^{2}-a\right) / 2 x_{i} \\
=\left(x_{i}+a / x_{i}\right) / 2
\end{array}
$$

- Matlab exercise: how many iterations to get $\sqrt{ } 17$ to four decimals?
- solve $f(x)=x^{3}-a=0$ to get cube roots:

$$
x_{i+1}=\left(2 x_{i}-a / x_{i}^{2}\right) / 3
$$

- these party tricks lead to general polynomial root finding but this is a minefield and needs very careful consideration

Roots of polynomials: special problems

- polynomials can be surprisingly very ill-conditioned
- sensitive to perturbations in the coefficients (wild root behaviour)
- an nth degree polynomial should have n roots but some may be ...
- repeated
- complex (conjugate pairs if real coefficients)
- so closely spaced as the cause numerical problems distinguishing them or converging separately

The problem of multiple roots

- consider $\mathrm{p}(\mathrm{x})=(\mathrm{x}-\mathrm{a})^{2}=0$
- repeated root $x=a$
- cannot bracket the root(s) with a sign change
- slope-following methods (e.g. Newton) may fail (or at least be inefficient and inaccurate) due to roundoff error,
because both $p(x) \& p^{\prime}(x)=0$ at the root
- can adopt a suitable method if the pathology is known in advance, but
- we can't always know about it, or where it is, and ...
- the 'repeatedness' may depend on numerical precision

Polynomial deflation

- as each root r is found (or estimated) $p(x)$ is factored into $p(x)=(x-r) q(x)$, where $q(x)$ is degree one less then $p(x)$
- root-finding effort is reduced as degree of $q(x)$ is gradually reduced
- avoid possibility of converging to the same (single) root as already found
- coefficients of successive polynomials $q(x)$ become increasingly less accurate, since each root is approximate so ...
- the successive roots become increasingly less accurate as well

Stability and polynomial deflation

- stability
- YES if inaccuracies are related simply to multiples of ε_{m}
- NO if successive significant figures are eroded and answers become meaningless
- forward deflation divides out factors by finding the highest power of x each time
- stable if the factor being divided corresponds to the root with smallest absolute value
- roots found should be considered tentative and polished using the original non-deflated polynomial
- two deflated roots may be inaccurate enough to polish to the same non-deflated root (spurious rootmultiplicity)
- need to back up and re-deflate using just the offending root

Two political camps

1. Go after the easy catch(es)

- find the real, distinct roots using one of the root-finding methods previously discussed
- proceed by deflation with linear and/or quadratic factors (if complex roots)

2. Use a safe method that always finds every root

- find the real, complex, single and/or repeated roots
- then polish all the roots
- companion matrix is one way
- Laguerre's method is another ... very clever way

Safe method \#1: companion matrix

- the characteristic polynomial of A is
$p(x)=\operatorname{det}(A-x I)=0$
- turn this around define the $m \times m$ companion matrix for $\mathrm{p}(\mathrm{x})=\mathrm{a}_{\mathrm{m}} \mathrm{x}^{\mathrm{m}}+\mathrm{a}_{\mathrm{m}-1} \mathrm{x}^{\mathrm{m}-1}+\cdots+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{0}$ by:

$$
\mathbf{A}=\left(\begin{array}{ccccc}
-\frac{a_{m-1}}{a_{m}} & -\frac{a_{m-2}}{a_{m}} & \cdots & -\frac{a_{1}}{a_{m}} & -\frac{a_{0}}{a_{m}} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

- the roots of $p(x)$ are the eigenvalues of A
- use a fancy (not-root-finding-based) eigenvalue method to get the roots of $p(x) \ldots$ voila

Safe method \#2: Laguerre's method

- uses complex arithmetic, even to find real roots
- convergence to a root is guaranteed from any starting point if coefficients are real
- some relations used in the algebra

$$
\begin{aligned}
P_{n}(x)= & \left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \\
P_{n}^{\prime}(x)= & \left(x-x_{2}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right) \\
& +\left(x-x_{1}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right) \\
& +\cdots+\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right) \\
= & P_{n}(x)\left(\frac{1}{x-x_{1}}+\frac{1}{x-x_{2}}+\cdots+\frac{1}{x-x_{n}}\right)
\end{aligned}
$$

Laguerre's method

- now comes a weird and wonderful step ...
- to find the root x_{1} make some oddball assumptions
- $\quad x_{1}$ is distance a from the current guess x, i.e. $x-x_{1}=a$
- ALL the other roots x_{i} are distance b from x_{1} i.e. $x-x_{i}=b$
- now re-write equations $[1,2]$ in terms of these assumed values:

$$
\begin{gathered}
\frac{1}{a}+\frac{n-1}{b}=G \\
\frac{1}{a^{2}}+\frac{n-1}{b^{2}}=H
\end{gathered}
$$

Laguerre's method

- next eliminate b and solve for a to give

$$
a=\frac{n}{G \pm \sqrt{(n-1)\left(n H-G^{2}\right)}}
$$

(where the sign is +ve if $\mathrm{G}>0$, -ve if $\mathrm{G}<0$)

- finally proceed with iterations to find x_{1}
- starting from $x \rightarrow G, H, a$
- then use x-a as next (improved) attempt at the root
- repeat and get new a value
- a gets small with CUBIC convergence rate
- the tentative root choice is $x=x_{1}$
_ these can be polished afterwards

Matlab and polynomials

- a polynomial $p(x)=c_{1} x^{n}+c_{2} x^{n-1}+\ldots+c_{n} x+c_{n+1}$ is represented in Matlab by a vector of coefficients: $c=\left[\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{n+1}\end{array}\right]$
- to evaluate $p(x)$ use $p x=p o l y v a l(c, x)$
- $\quad x$ and $p x$ can also be vectors of points
- Matlab can ...
- make a polynomial with given roots v: $c=p o l y(v)$
- find the roots of a polynomial: $v=\operatorname{roots}(c)$
- differentiate a polynomial: $d=\operatorname{polyder}(c)$
- do synthetic division of polys: $[q, r]=\operatorname{deconv}(c, d)$

Laguerre's method: example
Find the roots of the polynomial $p(x)=x^{5}+3 x^{4}-8 x^{3}-12 x^{2}+16 x$.

The bad and the ugly

- to show how bad polynomials can be numerically check out Wilkinson's perfidious polynomial: roots(poly(1:20)) ... roots(poly(1:21) ... etc.

Newton with numerical derivative?

- how about approximating $f^{\prime}(x)$ local derivative numerically by

$$
f^{\prime}((x)=[f(x+d x)-f(x)] / d x ?
$$

- not recommended for single variable problems
- requires one extra function evaluation per step, so convergence rate is reduced to $\sqrt{ } 2$
- if dx is too small roundoff kills you
- if dx is too large convergence goes linear and you might as well use the initial derivative $f^{\prime}\left(x_{0}\right)$ for every iteration (or the secant method)
- for multi-dimensional problems it's a different story ...

Systems of nonlinear equations

- there are no good general methods for solving nonlinear systems with more than one equation
- consider the simplest 2-dimensional problem:

$$
f(x, y)=0 \quad g(x, y)=0
$$

- $\quad \mathrm{f}$ \& g are
- arbitrary functions with...
- no connection in general
- the equations establish zero contours that divide the xy plane into regions where
- $\quad f(x, y)>0$ or $f(x, y)<0$ and
- $g(x, y)>0$ or $g(x, y)<0$

Systems of nonlinear equations

Simple geometric example

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& e^{x}+y=1
\end{aligned}
$$

Graph these first and observe two solutions: the intersection of the circle and the exponential curve at about ($-1.8,0.8$) and (1, -1.7)

- these common points have no special significance to either f or g
- to find a solution requires mapping out the contours for each function, then finding their intersection(s)
- in general these contours consist of an unknown number of disjoint curves in the xy plane
- hmm....not an easy problem

n-variable system

- in n -dimensions you need to find points common to n zero-contour hyper-surfaces of dimension $\mathrm{n}-1$
- insight is critical for any hope of success
- use the characteristics and special properties of the functions
- solution methods must be problem-specific
- is any solution at all expected?
- is a unique solution expected?
- where are solution(s) expected?
- a simple method which sometimes works for not too nonlinear systems is fixed-point iteration

Fixed point iteration: example
 Examine the capabilities of fixed point iteration for solving the system on slide 64.

Newton-Rhapson method

- the scalar Newton method can be generalized to multi-dimensions
- for one nonlinear equation $f(x)=0$ we had

$$
x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)
$$

- this can be written as a linear equation giving the correction δ (in terms of the function and its derivative at the current point)

$$
f^{\prime}\left(x_{i}\right) \delta=-f\left(x_{i}\right)
$$

- this δ correction moves the function closer to zero
- how can we generalize this to n-dimensions?

Newton-Rhapson method

- consider the problem of zero-ing n functions F_{i} each a function of n unknowns x_{i}

$$
F_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \quad i=1, \ldots n
$$

- in vector notation we can write $F(x)=0$, where $F=$ $\left(F_{1}, F_{2}, \ldots F_{n}\right)$ is the vector of functions
- each function F_{i} can be expanded in the neighbourhood of the point x as a multi-dimensional Taylor series:

$$
F_{i}(\mathbf{x}+\delta \mathbf{x})=F_{i}(\mathbf{x})+\sum_{j=1}^{N} \frac{\partial F_{i}}{\partial x_{j}} \delta x_{j}+O\left(\delta \mathbf{x}^{2}\right)
$$

- the matrix of partial derivatives is called the Jacobian matrix J:

$$
J_{i j} \equiv \frac{\partial F_{i}}{\partial x_{j}}
$$

Newton-Rhapson method

- in matrix notation the Taylor exansion is written

$$
\mathbf{F}(\mathbf{x}+\delta \mathbf{x})=\mathbf{F}(\mathbf{x})+\mathbf{J} \cdot \delta \mathbf{x}+O\left(\delta \mathbf{x}^{2}\right)
$$

- neglect terms higher than first order and set $F(x+\delta x)=0$
- this gives an equation for the correction vector δx which moves all the F_{i} functions simultaneously closer to zero:

$$
\mathbf{J} \cdot \delta \mathbf{x}=-\mathbf{F}
$$

Newton-Rhapson: simple example

$$
\begin{aligned}
f(x, y) & =4-x^{2}-y^{2}=0 \\
g(x, y) & =1-e^{x}-y=0
\end{aligned}
$$

- partial derivatives are $f_{x}=-2 x, f_{y}=-2 y, g_{x}=-e^{x}$ and $g_{y}=-1$
- Jacobian matrix is

$$
J=\left[\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right]=\left[\begin{array}{cc}
-2 x & -2 y \\
-e^{x} & -1
\end{array}\right]
$$

- beginning with $\mathrm{x}_{0}=(1,-1.7)$ we have to solve the linear system:

$$
J(1,-1.7)\left[\begin{array}{l}
\delta x \\
\delta y
\end{array}\right]=\left[\begin{array}{l}
f(1,-1.7) \\
g(1,-1.7)
\end{array}\right]
$$

Newton-Rhapson: simple example (cont.)

$$
\left[\begin{array}{cc}
-2 & 3.4 \\
2.7183 & -1.0
\end{array}\right]\left[\begin{array}{l}
\delta x \\
\delta y
\end{array}\right]=\left[\begin{array}{c}
0.1100 \\
-0.0183
\end{array}\right]
$$

- solution is $(\delta x, \delta y)=(0.0043,-0.0298)$.
- this gives $x_{1}=(1.0043,-1.7298)$
- now repeat to get $x_{2}=(1.004169,-1.729637)$ which satisfies very nicely $f\left(x_{2}\right)=1 e-07, g\left(x_{2}\right)=1 e-08$

Newton-Rhapson: practical considerations

- $\quad \mathrm{N}$-R reduces a n-dimensional nonlinear problem to a linear system in n unknown corrections (the δ vector)
- converges quadratically (like Newton)
- but only if the starting point is near a root
- expensive in function evaluations
- e.g. for $2 x 2$ example there are six evals. per step
- $n x n$ requires $n^{2}+n$ evals. per step
- $\quad \mathrm{N}-\mathrm{R}$ not easy to implement if n is large
- can try eliminating variables to reduce the size
- e.g. in the previous example solve for $y=1-e^{x}$ and sub. in eqn 1 to get $4-x^{2}-\left(1-\mathrm{e}^{x}\right)^{2}=0$, or $3-\mathrm{x}^{2}+2 \mathrm{e}^{\mathrm{x}}-\mathrm{e}^{2 \mathrm{x}}=0$, an equation which can be solved as a nonlinear equation in one variable (previous methods)

Jacobian estimation

- for larger systems can simplify the calcs. by estimating the Jacobian at successive steps in terms of an earlier Jacobian
- e.g. for n equations re-compute J every n steps
- example $f(x, y)=e^{x}-y=0$ and $g(x, y)=x y-e^{x}=0$
- \quad start with $x_{0}=(0.95,2.7)$
- in step 2 keep J fixed at the J of step 1
- converges to six decimal precision of exact solution (1,e) after three iterations
- or can use an approximate J which satisfies

$$
\mathbf{B}_{i+1} \cdot \delta \mathbf{x}_{i}=\delta \mathbf{F}_{i}
$$

- this is a multi-dimensional generalization of the secant method, which estimates df/dx (Broyden)

Newton-Rhapson \& minimization

- multi-dimensional minimizing is equivalent to finding a zero of a gradient function
- so why is multi-dimensional minimization relatively simple compared to root-finding?
- the components of the grad are related and satisfy strong conditions
- minimizing is equivalent to sliding down a onedimensional surface
- root-finding is equivalent to simultaneously minimizing n independent functions, i.e. sliding down n surfaces simultaneously
- tradeoffs are needed
- how is progress in one dimension traded against progress in another?

Nonlinear systems: conclusions

- apart from the simplest of problems solving nonlinear systems is a very difficult task
- all methods are iterative
- there are very few basic methods available
- more advanced methods impinge on the study of nonlinear optimization
- Matlab symbolic toolbox can evaluate:
- jacobian(w, v) ... the Jacobian of symbolic column vector w w.r.t. symbolic row vector v
- diff(S,' x^{\prime}) the derivative of a symbolic expression S w.r.t x

