
Unit II - Root-finding and nonlinear

systems

1

Unit II

Root-Finding and Nonlinear Systems

Unit II - Root-finding and nonlinear

systems

2

Root-finding and nonlinear systems

• strategy and tactics

• fixed-point iteration

• bracketing and bisection

• interpolation methods

• Newton’s method

• special tactics for polynomials

• nonlinear systems

– fixed point iteration

– Newton-Rhapson method

Unit II - Root-finding and nonlinear

systems

3

Numerical equation solving

• an equation that needs a solution can be written in
the form f(x) = 0

– so ‘finding roots’ covers ALL types of equations

• there are single-variable problems ...
– a one-dimensional problem or one independent variable

– there are many, [often] straightforward, methods available
but....

– some pitfalls still need careful avoidance tactics

• and there are multi-variable problems ...
– these are a very different battlefield

– they are MUCH more difficult and DEMAND insight

Unit II - Root-finding and nonlinear

systems

4

Single-variable (nonlinear) equations

• location(s) of root(s) can be determined/estimated

• roots can be trapped and hunted down

• all nonlinear methods are based on iteration
– one good reason for studying Jacobi and Gauss-Seidel

• proceed from an approximate trial solution until
some convergence criterion is met

• convergence speed and success can be quantified
to some extent

• for smooth functions a good algorithm will always
succeed given a good enough initial guess

Unit II - Root-finding and nonlinear

systems

5

Hamming* said....

‘The purpose of computing is insight

not numbers’

* famous 20th C numerical analyst

Unit II - Root-finding and nonlinear

systems

6

Insight

• with a nonlinear problem insight can be critical

simply to avoid total failure

– black box + nonlinear problems = a bad combination

• algorithms may fail because ...

– they find a highly accurate, but totally incorrect, root

– there is no root to find but they find one anyway

– they fail to find a root because the initial guess was too far

away

Unit II - Root-finding and nonlinear

systems

7

Three pieces of strategic advice

1. Examine the function graphically.

– to locate roughly where the roots are and how many there

may be

– curve sketching is one way or...

– best: use a Matlab plot to get the lay of the land

2. ALWAYS ALWAYS ALWAYS bracket a root.

– find a range of x-values over which the function changes

sign

3. Keep your iterations on a leash inside the

bracketing interval.

– unless you like to live dangerously

Unit II - Root-finding and nonlinear

systems

8

Bracketing a root

• a root is bracketed in the interval (a,b) if f(a) and

f(b) have different signs

• a continuous function

– is guaranteed to have at least one root in the interval (a,b)

– remember the intermediate value theorem?

• a discontinuous function

– may have a step inside the interval (a,b)

• numerically these statements are not so clear

– a continuous function may have a floating point ‘step’

where the root is supposed to be

– the zero can occur between two floating point numbers

which are adjacent to machine precision (in the hole)

Unit II - Root-finding and nonlinear

systems

9

Bracketing a root

the exact root x1 may not exist

as a floating point number

Unit II - Root-finding and nonlinear

systems

10

Extremum complication

• ‘walk downhill until you hit a sign change’

• doesn’t work if there is
– an extremum point (local max or min) or

– a multiple root

Unit II - Root-finding and nonlinear

systems

11

Singularities

• if f(x) ! ! at x=r inside (a,b) most algorithms will

converge to the singularity

• detecting this pathology is easy

– check |f(r)| and observe that it is very large instead of

close to zero as it should be near a root

• it’s difficult to bracket roots for blackbox functions

because you need a feeling for shape and

characteristics

Unit II - Root-finding and nonlinear

systems

12

Bracketing a singularity

Unit II - Root-finding and nonlinear

systems

13

A pathological function with many roots

Unit II - Root-finding and nonlinear

systems

14

Refining a root

• a root can be refined iteratively once it is trapped
inside the bracketing interval

• some methods are slow but sure (safe
investments)

– you know you will always find the root

– convergence efficiency may be very weak

• other methods are fast but risky (stock market)
– you can rapidly disappear to infinity without any warning

– counter measures can make them safer

Unit II - Root-finding and nonlinear

systems

15

Fixed-point iteration

• to solve f(x) = 0 re-express the equation in the
form: x = g(x)

• use this to derive the iteration expression

 xnew = g(xold)

• why learn this method?
– it is simple and easily applied in hand calculations

– provides an important theoretical framework for analysing
numerical root-finding techniques of all kinds

– can be generalized to nonlinear systems for which there is
a dearth of methods

Unit II - Root-finding and nonlinear

systems

16

Fixed-point iteration: example

Find the roots of f(x) = x - x1/3 - 2 using three different fixed-

point iteration functions:

• g1(x) = x1/3+2

• g2(x) = (6+2x1/3)/(3-x-2/3)

• g3(x) = (x-2)3

Unit II - Root-finding and nonlinear

systems

17

Fixed-point iteration: convergence

• in the example
– g1(x) converges slowly [7 digits/9 iterations]

– g2(x) converges quickly [11 digits/3 iterations]

– g3(x) always diverges regardless of the initial root guess

• fixed-point iteration will converge to a root in the
interval [a,b] if

– [a,b] contains a root

– |g'(x)| < 1 on [a,b]

• the iterations
– oscillate around the root if -1 < g'(x) < 0

– converge monotonically if 0 < g'(x) < 1

Unit II - Root-finding and nonlinear

systems

18

Bisection

• one of the safest methods
– always finds a root once it is bracketed inside (a,b)

– if there is more than one root the method converges to one
of them

– converges to a singularity if there is one in (a,b)

• check the function at the midpoint m of (a,b)

• determine which half-interval has the sign change
– either (a,m) or (m,b)

• repeat with the half-interval

Unit II - Root-finding and nonlinear

systems

19

Two practical issues with bisection

1. Evaluation of the midpoint
– m = (a + b)/2 can lead to roundoff problems

– m = a + (b - a)/2 is better

2. Checking for a sign change
– the test ‘f(a)*f(b) < 0?’ is susceptible to underflow

– better to use the exact test ‘sign(f(a)) ~= sign(f(b))’? based
on the floating point sign bit

– Matlab has a built-in sign function for this

– [see brackPlot illustrative function m-file]

Unit II - Root-finding and nonlinear

systems

20

Bisection: Matlab*

• demoBisect illustrate bisection with f(x) = x - x1/3 - 2
[slide 16]

• brackPlot can be used to locate the initial
bracketing intervals

• bisect is a general implementation of the bisection
method to find multiple roots

* These m-files are NOT provided in raw Matlab.

Unit II - Root-finding and nonlinear

systems

21

Convergence rate

• after n iterations the root lies in an interval size "n

"n = "n-1/2 = ... = "0/2
n

where "0 = b - a is the initial bracketing interval size

• to achieve a tolerance of " therefore requires n

iterations where

 n = log2("n/ "0)

• for n=50 we have "n/ "0 ~ eps so maximum number

of iterations ever required with bisection is about 50

Unit II - Root-finding and nonlinear

systems

22

Convergence rates for iterative processes

• suppose a process coverges so the successive

levels of uncertainty are given by

"n+1 = k "n
m

(with the k < 1)

• the method is said to converge

– linearly if m = 1 (like the bisection method)

– super-linearly if m > 1

• ‘linear’ convergence is a misnomer

– it is really geometric convergence

– the ‘linear’ means that successive significant digits are

won linearly

Unit II - Root-finding and nonlinear

systems

23

Convergence criteria

• in floating point arithmetic f(x) is unlikely to evaluate

to zero even if there is an obvious root available

(roundoff error)

• so we need a test to stop the iterative process

• can check tolerance on

– x iterates and/or....

– f(x) iterates

• some tolerance checks:

– absolute test ... ok near 1 but stupid near 1040

– relative test ... not feasible near zero

– hybrid test ... tol < #m (|a| + |b|)/2

– backup test is also good (e.g. limit on max # iterations)

Unit II - Root-finding and nonlinear

systems

24

Interpolation methods

• based on local approximation of a smooth function
near a root

– linear (secant, regula falsi)

– quadratic (Brent’s method)

• converge faster than bisection

• the next approximate root is found where the
interpolating function intersects the x-axis

– replaces one of the two endpoints of the iteration interval

– which endpoint should we choose?

Unit II - Root-finding and nonlinear

systems

25

Secant method

• most recent
prior estimate
is retained

• the older
estimate is
discarded

Unit II - Root-finding and nonlinear

systems

26

Regula falsi method

• next estimate
is based on
maintaining a
sign-change
bracketing in
the interval

Unit II - Root-finding and nonlinear

systems

27

Secant method: issues

• converges faster than regula falsi but

• convergence is not guaranteed because sign-

change bracketing is not maintained

• secant method is superlinear with convergence

power the golden ratio ($~1.618)

• problems with divergence can occur for

insufficiently continuous functions due to local

behaviour

Unit II - Root-finding and nonlinear

systems

28

Pathological example

Unit II - Root-finding and nonlinear

systems

29

Secant method: practicalities

• previous estimates for the root are xk-1& xk

• new estimate xk+1 is found using
– simple linear equation formula and

– find the x-intercept:

• this formula is good numerically because ...
– it is xk+1 = xk + %

– as f(xk)-f(xk-1) gets close to zero it accumulates roundoff

– but % will still be small because f(xk) is close to zero

– so the change in xk close to the root is small as it should be

Unit II - Root-finding and nonlinear

systems

30

Secant method: practicalities

• a not-so-good algebraic re-arrangement is

– same mathematically but not as good numerically

– subject to catastrophic cancellation as successive f(xk)
values get close

– subject to underflow as |f(x)| ! 0

Unit II - Root-finding and nonlinear

systems

31

Root-finding by linear interpolation

• secant and regula falsi methods based on linear
interpolation of f(x) within the current iteration
interval (a,b) and sub-intervals

• these are two-point methods since the
approximation is with respect to an interval

• typically faster convergence than bisection

• for pathological functions (e.g. not smooth, or
smooth with rapidly changing second derivative)
bisection may actually be faster

– linear approximation methods may proceed slowly through
many cycles to get close to the root

Unit II - Root-finding and nonlinear

systems

32

Root finding by quadratic interpolation

• a more rapid convergence than linear methods

• use quadratic interpolation in the iteration intervals

• interpolation requires three points (a,f(a)), (b,f(b))

and (c,f(c)) on the graph of the function

• the required quadratic should give x in terms of y,

since an x-value (i.e. the root) is being estimated

(i.e. when y = 0)

– i.e. this is inverse quadratic interpolation

– this topic comes in Unit III but is easy enough

Unit II - Root-finding and nonlinear

systems

33

Brent’s method

• the best all-round method [not in text]

• combines the speed of a superlinear quadratic

interpolation with the safeness of bisection

• guaranteed to find a root, as long as the function

can be evaluated in the initial bracketing interval

• book-keeping checks that the root estimate falls in

the bracketing interval

– if not the quadratic step is rejected

– a bisection step is interspersed to bring the root back on

side

– a bisection step can also be introduced if the convergence

is proceeding too slowly

Unit II - Root-finding and nonlinear

systems

34

Brent’s method

• for the three points given previously, the inverse
quadratic interpolation is given by:

• easy to see how this function is constructed to
satisfy the three given points

Unit II - Root-finding and nonlinear

systems

35

Brent’s method: practicalities

• put y=0 and solve for x

• simple algebra (or substitute and check) gives the
new estimate: x = b + p/q

Unit II - Root-finding and nonlinear

systems

36

Brent’s method: practicalities

• in x = b + p/q the b term is the current best estimate

for the root and p/q is supposed to be a small

correction factor

• if f is not smooth then q may turn out to be very

small, pulling x outside the bounds

• then you take a bisection step

• Matlab function for root-finding is based on Brent:

fzero(fun, x0, options, arg1, arg2, ...)

– fun = (string) name of the function to be evaluated

– x0 = scalar starting point or vector root bracket

– options = tolerances etc

– arg1 etc = parameters to be passed to fun

Unit II - Root-finding and nonlinear

systems

37

Newton’s method

• previous methods require only the function’s values

to be evaluated at points in the bracketing interval

• a faster convergence can be obtained if both the

function f(x) and its derivative f'(x) can be evaluated
for arbitrary x'(a,b)

• for practical reasons this means the symbolic forms

of f(x) and f'(x) should be available, not just values

• (geometrically) consists of extending the tangent

line to f(x) at the current xi to its x-intercept xi+1

which becomes the next root estimate

Unit II - Root-finding and nonlinear

systems

38

Newton’s method

Unit II - Root-finding and nonlinear

systems

39

Newton’s method: algebraic reasoning

• take the Taylor series expansion of f about x:

• drop the second-order and higher terms to get the
linear approximation of f near x:

f(x+") & f(x) + f'(x)"

• for small enough " and well-behaved f(x)
approximate the required root putting f(x+") = 0

• get the famous Newton formula: " = - f(x)/f' (x)

• this tells you that: xi+1 = xi - f(xi)/f' (xi)

Unit II - Root-finding and nonlinear

systems

40

Newton risks

• a good initial guess is critical for success

• if too far from the true root the neglected higher-order

terms in the Taylor expansion ARE important

• root estimate may lead far from the true root

– very inaccurate and meaningless corrections " are

calculated

• problems are compounded for functions that are not

smooth near the root

• a local method based on a single point with no

intrinsic root bracketing (risky stuff)

– bracketing bounds can be introduced to avoid shooting off to

infinity

Unit II - Root-finding and nonlinear

systems

41

Newton pathology: local extremum

Unit II - Root-finding and nonlinear

systems

42

Newton pathology: non-convergent cycle

Unit II - Root-finding and nonlinear

systems

43

Newton convergence

• Taylor expansion of f(x) about the exact root (gives

• the (i+1)th error term is

using the Newton formula

Unit II - Root-finding and nonlinear

systems

44

Newton convergence

• so Newton is superlinear since #i+1 & #i
2

• faster convergence rate than previous methods

• quadratic convergence means significant figures

are approx. DOUBLEDDOUBLED with each iteration

provided you are near a root [the payback]

• terminate iterations when
– the increment |f(xi) / f'(xi)| < tol or

– |f(xi+1)| > |f (xi)|

Unit II - Root-finding and nonlinear

systems

45

Newton: unpredictable global convergence

• consider the set of starting values from which

Newton converges to a root

• for example z3 - 1 = 0 has one real root z = 1 and

two complex roots z = exp(±2)i/3)

• basins of convergence (starting points which

converge to one of these roots) occupy 1/3 of the

complex plane but....

• the boundary is a fractal

• see http://www.math.hawaii.edu/lab/newton.html

Unit II - Root-finding and nonlinear

systems

46

Toward polynomial roots: finding square roots

• use Newton to solve f(x) = x2 - a = 0:

 xi+1 = xi - (xi
2 - a) / 2xi

 = (xi + a/xi) / 2
– Matlab exercise: how many iterations to get *17 to four

decimals?

• solve f(x) = x3 - a = 0 to get cube roots:

 xi+1 = (2xi - a/xi
2)/3

• these party tricks lead to general polynomial root
finding but this is a minefield and needs very
careful consideration

Unit II - Root-finding and nonlinear

systems

47

Roots of polynomials: special problems

• polynomials can be surprisingly very ill-conditioned
– sensitive to perturbations in the coefficients (wild root

behaviour)

• an nth degree polynomial should have n roots but
some may be ...

– repeated

– complex (conjugate pairs if real coefficients)

– so closely spaced as the cause numerical problems
distinguishing them or converging separately

Unit II - Root-finding and nonlinear

systems

48

The problem of multiple roots

• consider p(x) = (x - a)2 = 0
– repeated root x = a

– cannot bracket the root(s) with a sign change

– slope-following methods (e.g. Newton) may fail (or at least
be inefficient and inaccurate) due to roundoff error,

because both p(x) & p'(x) = 0 at the root

• can adopt a suitable method if the pathology is
known in advance, but

– we can’t always know about it, or where it is, and ...

– the ‘repeatedness’ may depend on numerical precision

Unit II - Root-finding and nonlinear

systems

49

Polynomial deflation

• as each root r is found (or estimated) p(x) is
factored into p(x) = (x-r)q(x), where q(x) is degree
one less then p(x)

– root-finding effort is reduced as degree of q(x) is gradually
reduced

– avoid possibility of converging to the same (single) root as
already found

• coefficients of successive polynomials q(x) become
increasingly less accurate, since each root is
approximate so

• the successive roots become increasingly less
accurate as well

Unit II - Root-finding and nonlinear

systems

50

Stability and polynomial deflation

• stability
– YES if inaccuracies are related simply to multiples of #m

– NO if successive significant figures are eroded and
answers become meaningless

• forward deflation divides out factors by finding the
highest power of x each time

– stable if the factor being divided corresponds to the root
with smallest absolute value

• roots found should be considered tentative and
polished using the original non-deflated polynomial

• two deflated roots may be inaccurate enough to
polish to the same non-deflated root (spurious root-
multiplicity)

– need to back up and re-deflate using just the offending
root

Unit II - Root-finding and nonlinear

systems

51

Two political camps

1. Go after the easy catch(es)
• find the real, distinct roots using one of the root-finding

methods previously discussed

• proceed by deflation with linear and/or quadratic factors (if
complex roots)

2. Use a safe method that always finds every root
• find the real, complex, single and/or repeated roots

• then polish all the roots

• companion matrix is one way

• Laguerre’s method is another ... very clever way

Unit II - Root-finding and nonlinear

systems

52

Safe method #1: companion matrix

• the roots of p(x) are the eigenvalues of A

• use a fancy (not-root-finding-based) eigenvalue
method to get the roots of p(x) voila

• the characteristic polynomial of A is

p(x) = det(A - xI) = 0

• turn this around define the m+m companion
matrix for p(x) = amxm + am-1x

m-1 + ... + a1x + a0 by:

Unit II - Root-finding and nonlinear

systems

53

Safe method #2: Laguerre’s method

• uses complex arithmetic, even to find real roots

• convergence to a root is guaranteed from any
starting point if coefficients are real

• some relations used in the algebra

Unit II - Root-finding and nonlinear

systems

54

Laguerre’s method

[eqn 1]

[eqn 2]

Unit II - Root-finding and nonlinear

systems

55

Laguerre’s method

• now comes a weird and wonderful step ...

• to find the root x1 make some oddball assumptions
– x1 is distance a from the current guess x, i.e. x-x1 = a

– ALL the other roots xi are distance b from x1,i.e. x-xi = b

• now re-write equations [1,2] in terms of these
assumed values:

Unit II - Root-finding and nonlinear

systems

56

Laguerre’s method

• next eliminate b and solve for a to give

(where the sign is +ve if G>0, -ve if G<0)

• finally proceed with iterations to find x1

– starting from x ! G, H, a

– then use x-a as next (improved) attempt at the root

– repeat and get new a value

– a gets small with CUBIC convergence rate

– the tentative root choice is x = x1

– these can be polished afterwards

Unit II - Root-finding and nonlinear

systems

57

Matlab and polynomials

• a polynomial p(x) = c1x
n + c2x

n-1 + ... + cnx + cn+1

is represented in Matlab by a vector of coefficients:

c = [c1 c2 ... cn+1]

• to evaluate p(x) use px = polyval(c,x)
– x and px can also be vectors of points

• Matlab can ...
– make a polynomial with given roots v: c = poly(v)

– find the roots of a polynomial: v = roots(c)

– differentiate a polynomial: d = polyder(c)

– do synthetic division of polys: [q,r] = deconv(c,d)

Unit II - Root-finding and nonlinear

systems

58

Laguerre’s method: example
Find the roots of the polynomial p(x) = x5 + 3x4 - 8x3 - 12x2 + 16x.

Unit II - Root-finding and nonlinear

systems

59

The bad and the ugly

• to show how bad polynomials can be numerically
.... check out Wilkinson’s perfidious polynomial:

roots(poly(1:20)) ... roots(poly(1:21) ... etc.

Unit II - Root-finding and nonlinear

systems

60

Newton with numerical derivative?

• how about approximating f'(x) local derivative
numerically by

 f'((x) = [f(x+dx) - f(x)]/dx?

• not recommended for single variable problems
– requires one extra function evaluation per step, so

convergence rate is reduced to *2

– if dx is too small roundoff kills you

– if dx is too large convergence goes linear and you might as
well use the initial derivative f'(x0) for every iteration (or the
secant method)

• for multi-dimensional problems it’s a different story ...

Unit II - Root-finding and nonlinear

systems

61

Systems of nonlinear equations

• there are no good general methods for solving
nonlinear systems with more than one equation

• consider the simplest 2-dimensional problem:

 f(x,y) = 0 g(x,y) = 0

• f & g are
– arbitrary functions with...

– no connection in general

• the equations establish zero contours that divide
the xy plane into regions where

– f(x,y)>0 or f(x,y)<0 and

– g(x,y)>0 or g(x,y)<0

Unit II - Root-finding and nonlinear

systems

62

Systems of nonlinear equations

Unit II - Root-finding and nonlinear

systems

63

Systems of nonlinear equations

• solutions to be found are points common to the
zero contours of both f and g

• these common points have no special significance
to either f or g

• to find a solution requires mapping out the contours
for each function, then finding their intersection(s)

• in general these contours consist of an unknown
number of disjoint curves in the xy plane

• hmm....not an easy problem

Unit II - Root-finding and nonlinear

systems

64

Simple geometric example

 x2 + y2 = 4

 ex + y = 1

Graph these first and observe two solutions: the intersection of the

circle and the exponential curve at about (-1.8, 0.8) and (1, -1.7)

Unit II - Root-finding and nonlinear

systems

65

n-variable system

• in n-dimensions you need to find points common to
n zero-contour hyper-surfaces of dimension n-1

• insight is critical for any hope of success
– use the characteristics and special properties of the

functions

• solution methods must be problem-specific
– is any solution at all expected?

– is a unique solution expected?

– where are solution(s) expected?

• a simple method which sometimes works for not
too nonlinear systems is fixed-point iteration

Unit II - Root-finding and nonlinear

systems

66

Fixed point iteration: example

Examine the capabilities of fixed point iteration for solving the

system on slide 64.

Unit II - Root-finding and nonlinear

systems

67

Newton-Rhapson method

• the scalar Newton method can be generalized to
multi-dimensions

• for one nonlinear equation f(x)=0 we had

 xi+1 = xi - f(xi) / f'(xi)

• this can be written as a linear equation giving the
correction " (in terms of the function and its
derivative at the current point)

f'(xi) " = - f(xi)

• this " correction moves the function closer to zero

• how can we generalize this to n-dimensions?

Unit II - Root-finding and nonlinear

systems

68

Newton-Rhapson method

• consider the problem of zero-ing n functions Fi each a
function of n unknowns xi

Fi(x1,...,xn) = 0 i= 1,...n

• in vector notation we can write F(x) = 0, where F =
(F1, F2, ...Fn) is the vector of functions

• each function Fi can be expanded in the
neighbourhood of the point x as a multi-dimensional
Taylor series:

• the matrix of partial derivatives is called the
Jacobian matrix J:

Unit II - Root-finding and nonlinear

systems

69

Newton-Rhapson method

• in matrix notation the Taylor exansion is written

• neglect terms higher than first order and set
F(x+"x)=0

• this gives an equation for the correction vector "x
which moves all the Fi functions simultaneously
closer to zero:

Unit II - Root-finding and nonlinear

systems

70

Practical considerations

• the linear system given in the N-R equation can be
solved by LU decomposition (or other method)

• iteration proceeds by putting

 and checking convergence condition(s)
– check both the functions and the roots (||F(x)|| < ftol and

||"|| < xtol)

– once either reaches machine precision nothing further will
change

– examine behaviour frequently to ensure the process is
converging on a root, and onto the desired root

– J can be supplied symbolically or by finite differences if
necessary

Unit II - Root-finding and nonlinear

systems

71

Newton-Rhapson: simple example

 f(x,y) = 4 - x2 - y2 = 0

 g(x,y) = 1 - ex - y = 0

• partial derivatives are fx = -2x, fy = -2y, gx = -ex and
gy = -1

• Jacobian matrix is

• beginning with x0 = (1,-1.7) we have to solve the
linear system:

Unit II - Root-finding and nonlinear

systems

72

Newton-Rhapson: simple example (cont.)

• solution is ("x, "y) = (0.0043,-0.0298).

• this gives x1 = (1.0043,-1.7298)

• now repeat to get x2 = (1.004169, -1.729637) which
satisfies very nicely f(x2) = 1e-07, g(x2) = 1e-08

Unit II - Root-finding and nonlinear

systems

73

Newton-Rhapson: practical considerations

• N-R reduces a n-dimensional nonlinear problem to
a linear system in n unknown corrections (the "
vector)

• converges quadratically (like Newton)
– but only if the starting point is near a root

• expensive in function evaluations
– e.g. for 2x2 example there are six evals. per step

– nxn requires n2+n evals. per step

• N-R not easy to implement if n is large

• can try eliminating variables to reduce the size
– e.g. in the previous example solve for y = 1 - ex and sub.

in eqn 1 to get 4 - x2 - (1-ex)2 = 0, or 3 - x2 + 2ex - e2x = 0,
an equation which can be solved as a nonlinear equation
in one variable (previous methods)

Unit II - Root-finding and nonlinear

systems

74

Jacobian estimation

• for larger systems can simplify the calcs. by
estimating the Jacobian at successive steps in terms
of an earlier Jacobian

– e.g. for n equations re-compute J every n steps

• example f(x,y) = ex - y = 0 and g(x,y) = xy - ex = 0
– start with x0 = (0.95, 2.7)

– in step 2 keep J fixed at the J of step 1

– converges to six decimal precision of exact solution (1,e)
after three iterations

• or can use an approximate J which satisfies

• this is a multi-dimensional generalization of the
secant method, which estimates df/dx (Broyden)

Unit II - Root-finding and nonlinear

systems

75

Newton-Rhapson & minimization

• multi-dimensional minimizing is equivalent to
finding a zero of a gradient function

• so why is multi-dimensional minimization relatively
simple compared to root-finding?

• the components of the grad are related and satisfy
strong conditions

• minimizing is equivalent to sliding down a one-
dimensional surface

• root-finding is equivalent to simultaneously
minimizing n independent functions, i.e. sliding
down n surfaces simultaneously

– tradeoffs are needed

– how is progress in one dimension traded against progress
in another?

Unit II - Root-finding and nonlinear

systems

76

Nonlinear systems: conclusions

• apart from the simplest of problems solving nonlinear
systems is a very difficult task

• all methods are iterative

• there are very few basic methods available

• more advanced methods impinge on the study of
nonlinear optimization

• Matlab symbolic toolbox can evaluate:
– jacobian(w,v) ... the Jacobian of symbolic column vector w

w.r.t. symbolic row vector v

– diff(S,’x’) the derivative of a symbolic expression S w.r.t x

