Unit Il

Root-Finding and Nonlinear Systems

Unit Il - Root-finding and nonlinear 1
systems

Root-finding and nonlinear systems

» strategy and tactics

« fixed-point iteration

» bracketing and bisection
 interpolation methods

* Newton’s method

» special tactics for polynomials

* nonlinear systems
— fixed point iteration
— Newton-Rhapson method

Unit Il - Root-finding and nonlinear 2
systems

Numerical equation solving

an equation that needs a solution can be written in
the form f(x) =0

— so ‘finding roots’ covers ALL types of equations
there are single-variable problems ...

— aone-dimensional problem or one independent variable

— there are many, [often] straightforward, methods available
but....

— some pitfalls still need careful avoidance tactics
and there are multi-variable problems ...

— these are a very different battlefield

— they are MUCH more difficult and DEMAND insight

Unit Il - Root-finding and nonlinear 3
systems

Single-variable (nonlinear) equations

location(s) of root(s) can be determined/estimated
roots can be trapped and hunted down
all nonlinear methods are based on iteration

— one good reason for studying Jacobi and Gauss-Seidel
proceed from an approximate trial solution until
some convergence criterion is met
convergence speed and success can be quantified
to some extent
for smooth functions a good algorithm will always
succeed given a good enough initial guess

Unit Il - Root-finding and nonlinear 4
systems

Hamming" said....

‘The purpose of computing is insight
not numbers’

* famous 20th C numerical analyst

Unit Il - Root-finding and nonlinear 5
systems

Insight

with a nonlinear problem insight can be critical
simply to avoid total failure

— black box + nonlinear problems = a bad combination
algorithms may fail because ...

— they find a highly accurate, but totally incorrect, root

— there is no root to find but they find one anyway

— they fail to find a root because the initial guess was too far
away

Unit Il - Root-finding and nonlinear 6
systems

Three pieces of strategic advice

1. Examine the function graphically.
— to locate roughly where the roots are and how many there
may be
— curve sketching is one way or...
— best: use a Matlab plot to get the lay of the land
2. ALWAYS ALWAYS ALWAYS bracket a root.
— find a range of x-values over which the function changes
sign
3. Keep your iterations on a leash inside the
bracketing interval.
— unless you like to live dangerously

Unit Il - Root-finding and nonlinear 7
systems

Bracketing a root

aroot is bracketed in the interval (a,b) if f(a) and

f(b) have different signs

a continuous function
is guaranteed to have at least one root in the interval (a,b)
remember the intermediate value theorem?

a discontinuous function
may have a step inside the interval (a,b)

numerically these statements are not so clear
a continuous function may have a floating point ‘step’
where the root is supposed to be
the zero can occur between two floating point numbers
which are adjacent to machine precision (in the hole)

Unit Il - Root-finding and nonlinear 8
systems

Bracketing a root

/ the exact root x, may not exist

as a floating point number

Unit Il - Root-finding and nonlinear 9
systems

Extremum complication

‘walk downhill until you hit a sign change’
doesn’t work if there is ...

an extremum point (local max or min) or

a multiple root

Unit Il - Root-finding and nonlinear 10
systems

Singularities

* iff(x) = « at x=r inside (a,b) most algorithms will
converge to the singularity

» detecting this pathology is easy

— check |f(r)] and observe that it is very large instead of
close to zero as it should be near a root

+ it's difficult to bracket roots for blackbox functions
because you need a feeling for shape and
characteristics

Unit Il - Root-finding and nonlinear "
systems

Bracketing a singularity

Unit Il - Root-finding and nonlinear 12
systems

A pathological function with many roots

Unit Il - Root-finding and nonlinear 13
systems

Refining a root

+ aroot can be refined iteratively once it is trapped
inside the bracketing interval
* some methods are slow but sure (safe
investments)
— you know you will always find the root
— convergence efficiency may be very weak
» other methods are fast but risky (stock market)
— you can rapidly disappear to infinity without any warning
— counter measures can make them safer

Unit Il - Root-finding and nonlinear 14
systems

Fixed-point iteration

to solve f(x) = 0 re-express the equation in the
form: x = g(x)
use this to derive the iteration expression

xnew = g(xold)
why learn this method?
— itis simple and easily applied in hand calculations

— provides an important theoretical framework for analysing
numerical root-finding techniques of all kinds

— can be generalized to nonlinear systems for which there is
a dearth of methods

Unit Il - Root-finding and nonlinear 15
systems

Fixed-point iteration: example

Find the roots of f(x) = x - x'3 - 2 using three different fixed-
point iteration functions:

. gq(x) = x13+2

© o glx) = (6+2x1)/(3x2)

© ga(x) = (x-2)°

Unit Il - Root-finding and nonlinear 16
systems

Fixed-point iteration: convergence

in the example

— g4(x) converges slowly [7 digits/9 iterations]

— g,(x) converges quickly [11 digits/3 iterations]

— gs(x) always diverges regardless of the initial root guess
fixed-point iteration will converge to a root in the
interval [a,b] if

— [a,b] contains a root

- lg'x)<1on[ab]
the iterations

— oscillate around the root if -1 < g'(x) < 0

— converge monotonically if 0 < g'(x) < 1

Unit Il - Root-finding and nonlinear 17
systems

Bisection

+ one of the safest methods
— always finds a root once it is bracketed inside (a,b)
— if there is more than one root the method converges to one
of them
— converges to a singularity if there is one in (a,b)
» check the function at the midpoint m of (a,b)
+ determine which half-interval has the sign change
— either (a,m) or (m,b)
* repeat with the half-interval

Unit Il - Root-finding and nonlinear 18
systems

1.

2.

Two practical issues with bisection

Evaluation of the midpoint
— m=(a+b)/2 can lead to roundoff problems
— m=a+(b-a)2is better
Checking for a sign change
— the test ‘f(a)*f(b) < 0?’ is susceptible to underflow

— better to use the exact test ‘sign(f(a)) ~= sign(f(b))'? based
on the floating point sign bit

— Matlab has a built-in sign function for this
— [see brackPlot illustrative function m-file]

Unit Il - Root-finding and nonlinear 19
systems

Bisection: Matlab”

» demoBisect illustrate bisection with f(x) = x - x'3 -2
[slide 16]

* brackPlot can be used to locate the initial
bracketing intervals

* bisectis a general implementation of the bisection
method to find multiple roots

* These m-files are NOT provided in raw Matlab.

Unit Il - Root-finding and nonlinear 20
systems

Convergence rate

after n iterations the root lies in an interval size 9§,
8,=8,4/2= .= 8y/2"
where §, = b - a is the initial bracketing interval size
to achieve a tolerance of § therefore requires n
iterations where
n = 10g,(8,/ 8)
for n=50 we have 9,/ 8, ~ eps so maximum number
of iterations ever required with bisection is about 50

Unit Il - Root-finding and nonlinear 21
systems

Convergence rates for iterative processes

* suppose a process coverges so the successive
levels of uncertainty are given by
6n+1 =k 6nm
(with the k < 1)
» the method is said to converge
— linearly if m = 1 (like the bisection method)
— super-linearly if m > 1
+ ‘linear’ convergence is a misnomer ...
— itis really geometric convergence

— the ‘linear’ means that successive significant digits are
won linearly

Unit Il - Root-finding and nonlinear 22
systems

Convergence criteria

in floating point arithmetic f(x) is unlikely to evaluate
to zero even if there is an obvious root available
(roundoff error)
so we need a test to stop the iterative process
can check tolerance on

— xiterates and/or....

- f(x) iterates
some tolerance checks:

— absolute test ... ok near 1 but stupid near 104°

— relative test ... not feasible near zero

— hybrid test ... tol < ¢, (|a] + [b])/2

— backup test is also good (e.g. limit on max # iterations)

Unit Il - Root-finding and nonlinear 23
systems

Interpolation methods

* based on local approximation of a smooth function
near a root
— linear (secant, regula falsi)
— quadratic (Brent’s method)
» converge faster than bisection
+ the next approximate root is found where the
interpolating function intersects the x-axis
— replaces one of the two endpoints of the iteration interval
— which endpoint should we choose?

Unit Il - Root-finding and nonlinear 24
systems

Secant method

Regula falsi method

. most recent . next estimate
prior estimate is based on
is retained maintaining a
. the_older. ¥ sign-change
X e_stlmate is bracketing in
discarded the interval
Unit Il - Root-finding and nonlinear 25 Unit Il - Root-finding and nonlinear 26
systems systems
: Pathological example
Secant method: issues 9 P
converges faster than regula falsi but
flx)
convergence is not guaranteed because sign-
change bracketing is not maintained
secant method is superlinear with convergence
power the golden ratio (¢~1.618)
problems with divergence can occur for
insufficiently continuous functions due to local
behaviour
134
Unit Il - Root-finding and nonlinear 27 Unit Il - Root-finding and nonlinear 28

systems

systems

Secant method: practicalities

previous estimates for the root are x,_,& x,
new estimate x,,, is found using

simple linear equation formula and

find the x-intercept:

Tit = Tk — fl2k) B
flaw) — flop—1)
this formula is good numerically because ...
itis X =X+ A
as f(x,)-f(x,.;) gets close to zero it accumulates roundoff
but A will still be small because f(x,) is close to zero
so the change in x, close to the root is small as it should be

Unit Il - Root-finding and nonlinear 29
systems

Secant method: practicalities

a not-so-good algebraic re-arrangement is

e flog)zp—1 = flag_1)ag
e Fr) = Flap1)

same mathematically but not as good numerically

subject to catastrophic cancellation as successive f(x,)
values get close

subject to underflow as [f(x)| — O

Unit Il - Root-finding and nonlinear 30
systems

Root-finding by linear interpolation

secant and regula falsi methods based on linear
interpolation of f(x) within the current iteration
interval (a,b) and sub-intervals

these are two-point methods since the
approximation is with respect to an interval
typically faster convergence than bisection

for pathological functions (e.g. not smooth, or
smooth with rapidly changing second derivative)
bisection may actually be faster

— linear approximation methods may proceed slowly through
many cycles to get close to the root

Unit Il - Root-finding and nonlinear 31
systems

Root finding by quadratic interpolation

a more rapid convergence than linear methods
use quadratic interpolation in the iteration intervals
interpolation requires three points (a,f(a)), (b,f(b))
and (c,f(c)) on the graph of the function

the required quadratic should give x in terms of y,
since an x-value (i.e. the root) is being estimated
(i.e. wheny =0)

— i.e. this is inverse quadratic interpolation

— this topic comes in Unit Ill but is easy enough

Unit Il - Root-finding and nonlinear 32
systems

Brent’'s method

the best all-round method [not in text]

combines the speed of a superlinear quadratic
interpolation with the safeness of bisection

guaranteed to find a root, as long as the function
can be evaluated in the initial bracketing interval

book-keeping checks that the root estimate falls in
the bracketing interval
— if not the quadratic step is rejected
— a bisection step is interspersed to bring the root back on
side
— abisection step can also be introduced if the convergence
is proceeding too slowly

Unit Il - Root-finding and nonlinear 33
systems

Brent’'s method

for the three points given previously, the inverse
quadratic interpolation is given by:
o = F@lly = b)) + ly — fb)
[fle) = fla)llf(c) — F(B)] ~ [fla)— f(B
L= 1y = fl)b
[F(B) = f()]Lf (b) = fla)]

[y — flc)la
1lf(a) — fle]]

]
)

easy to see how this function is constructed to
satisfy the three given points

Unit Il - Root-finding and nonlinear 34
systems

Brent’s method: practicalities

put y=0 and solve for x

simple algebra (or substitute and check) gives the
new estimate: x =b + p/q

ro= f()/fle)
s = f(b)/f(a)
t = fla)/fle)
p = sit(r—t){c—=b)—(1—=7)(h—a)]
g = (t—1(r—-1(s-1)
Unit Il - Root-finding and nonlinear 35

systems

Brent’'s method: practicalities

in x = b + p/q the b term is the current best estimate
for the root and p/q is supposed to be a small
correction factor
if f is not smooth then g may turn out to be very
small, pulling x outside the bounds
then you take a bisection step
Matlab function for root-finding is based on Brent:
fzero(fun, x0, options, arg1, arg2, ...)

— fun = (string) name of the function to be evaluated

— x0 = scalar starting point or vector root bracket

— options = tolerances etc

— arg1 etc = parameters to be passed to fun

Unit Il - Root-finding and nonlinear 36
systems

Newton’s method

previous methods require only the function’s values
to be evaluated at points in the bracketing interval
a faster convergence can be obtained if both the
function f(x) and its derivative f'(x) can be evaluated
for arbitrary x&(a,b)

for practical reasons this means the symbolic forms
of f(x) and f(x) should be available, not just values
(geometrically) consists of extending the tangent
line to f(x) at the current x; to its x-intercept x;,4
which becomes the next root estimate

Unit Il - Root-finding and nonlinear 37
systems

Newton’s method

S

_./

Unit Il - Root-finding and nonlinear 38
systems

Newton’s method: algebraic reasoning
take the Taylor series expansion of f about x:
1E
fle+d) fle)+ f/(z)d + f_—i‘r‘]c‘? +....

drop the second-order and higher terms to get the
linear approximation of f near x:

f(x+8) = f(x) + f'(x)d
for small enough 6 and well-behaved f(x)
approximate the required root putting f(x+d) = 0
get the famous Newton formula: & = - f(x)/f' (x)
this tells you that: x;,, = x; = f(x;)/f' (x;)

Unit Il - Root-finding and nonlinear 39
systems

Newton risks

a good initial guess is critical for success
if too far from the true root the neglected higher-order
terms in the Taylor expansion ARE important
root estimate may lead far from the true root
— very inaccurate and meaningless corrections 9 are
calculated
problems are compounded for functions that are not
smooth near the root
a local method based on a single point with no
intrinsic root bracketing (risky stuff)
— bracketing bounds can be introduced to avoid shooting off to
infinity

Unit Il - Root-finding and nonlinear 40
systems

Newton pathology: local extremum

fx)

/

Unit Il - Root-finding and nonlinear 4“1
systems

Newton pathology: non-convergent cycle

Sfx)

Unit Il - Root-finding and nonlinear 42
systems

Newton convergence

Taylor expansion of f(x) about the exact root a gives

)2
0= fla) = flz) + (o — 2:) f () + = QIZ))+ -

the (i+1)th error term is

gi4l = Ti41 — &
= (z;—a)- J{((J;’)) using the Newton formula
_ (n—aw(“ zy) fllwg) + =57 () +
Fr(ws)
(o= 2)® ()
2 Jr(s)
Unit Il - Root-finding and nonlinear 43

systems

Newton convergence

N N fﬂ'(&) B
=il 2f,(ﬂ) =i

» so Newton is superlinear since ¢;,,~ &2
» faster convergence rate than previous methods
* quadratic convergence means significant figures
are approx. DOUBLED with each iteration
provided you are near a root [the payback]
+ terminate iterations when

— theincrement [f(x)) / f'(x)| < tol or
= [l > IF)

Unit Il - Root-finding and nonlinear 44
systems

Newton: unpredictable global convergence

consider the set of starting values from which
Newton converges to a root

for example z3 - 1 = 0 has one real root z = 1 and
two complex roots z = exp(+2mi/3)

basins of convergence (starting points which
converge to one of these roots) occupy 1/3 of the
complex plane but....

the boundary is a fractal
see http://www.math.hawaii.edu/lab/newton.html

Unit Il - Root-finding and nonlinear 45
systems

Toward polynomial roots: finding square roots

+ use Newton to solve f(x) =x%-a =0:
Xt = X; = (%2 - @) / 2%;
=(x;+alx)/2
— Matlab exercise: how many iterations to get v17 to four
decimals?

+ solve f(x) = x3 - a = 0 to get cube roots:
Xis1 = (2X, - a/x2)/3
« these party tricks lead to general polynomial root

finding but this is a minefield and needs very
careful consideration

Unit Il - Root-finding and nonlinear 46
systems

Roots of polynomials: special problems

polynomials can be surprisingly very ill-conditioned
— sensitive to perturbations in the coefficients (wild root
behaviour)
an nth degree polynomial should have n roots but
some may be ...
— repeated
— complex (conjugate pairs if real coefficients)

— so closely spaced as the cause numerical problems
distinguishing them or converging separately

Unit Il - Root-finding and nonlinear 47
systems

The problem of multiple roots

+ consider p(x) = (x-a)2=0
— repeated root x = a
— cannot bracket the root(s) with a sign change
— slope-following methods (e.g. Newton) may fail (or at least
be inefficient and inaccurate) due to roundoff error,
because both p(x) & p'(x) = 0 at the root
« can adopt a suitable method if the pathology is
known in advance, but
— we can't always know about it, or where it is, and ...
— the ‘repeatedness’ may depend on numerical precision

Unit Il - Root-finding and nonlinear 48
systems

Polynomial deflation

as each root r is found (or estimated) p(x) is
factored into p(x) = (x-r)q(x), where q(x) is degree
one less then p(x)
— root-finding effort is reduced as degree of q(x) is gradually
reduced
— avoid possibility of converging to the same (single) root as
already found
coefficients of successive polynomials q(x) become
increasingly less accurate, since each root is
approximate so

the successive roots become increasingly less
accurate as well

Unit Il - Root-finding and nonlinear
systems

49

Stability and polynomial deflation

« stability
— YES if inaccuracies are related simply to multiples of ¢,
— NO if successive significant figures are eroded and
answers become meaningless
. forward deflation divides out factors by finding the
highest power of x each time
— stable if the factor being divided corresponds to the root
with smallest absolute value
« roots found should be considered tentative and
polished using the original non-deflated polynomial
* two deflated roots may be inaccurate enough to
polish to the same non-deflated root (spurious root-
multiplicity)
— need to back up and re-deflate using just the offending
root

Unit Il - Root-finding and nonlinear 50
systems

Two political camps

Safe method #1: companion matrix
+ the characteristic polynomial of A is

1. Go after the easy catch(es) p(x) = det(A-xI)=0
« find the real, distinct roots using one of the root-finding * turn this around define the mxm companion
methods previously discussed matrix for p(x) = a, XM +a,X™! + - +a,x + a, by:
* proceed by deflation with linear and/or quadratic factors (if a a a a
complex roots) 7;:_"‘_1 - :1",;2 T " am
2. Use a safe method that always finds every root 1 0 e 0 0
« find the real, complex, single and/or repeated roots A= 0 1 0 0
« then polish all the roots : :
¢ companion matrix is one way 0 0 e 1 0
¢ Laguerre’s method is another ... very clever way .
» the roots of p(x) are the eigenvalues of A
* use a fancy (not-root-finding-based) eigenvalue
method to get the roots of p(x) voila
Unit Il - Root-finding and nonlinear 51 Unit Il - Root-finding and nonlinear 52
systems systems
fe meth 2: L rre’s meth
Safe method #2: Laguerre’s method Laguerre’s method
* uses complex arithmetic, even to find real roots
* convergence to a root is guaranteed from any d 1P ()] = 1 1 1 Plx) _ Gl
starting point if coefficients are real o P ()] = — ottt TR W
* some relations used in the algebra P L . . lean 1]
[t P
———=In|F (]| = - = - IR :
Pox)=(r —2)(x —a9) - (& —x,) dx? |£a)] (x—x1)2 i (2 —x2)? Tt (x —2,)"
ST U)
FP,(x) = (r—x9)(r—a3) (' —xn) Pfi(:z') 2 Rf;[.l'] B .
+(r—a)(x—x3) (2 —1y) GG H(zx) lean 2]
+oot(r—m)(z—we) o (r—2p)
1 1 1
= Pn(_:r'_l(+ oot)
r—ry X —x =y
Unit Il - Root-finding and nonlinear 53 Unit Il - Root-finding and nonlinear 54

systems

systems

Laguerre’s method

now comes a weird and wonderful step ...
to find the root x, make some oddball assumptions

— X, is distance a from the current guess x, i.e. x-x, = a
— ALL the other roots x; are distance b from x, i.e. x-x; = b

now re-write equations [1,2] in terms of these
assumed values:

1 n n—1

- -

a b

1 . n—1
a? b2

Unit I - Root-finding and nonlinear 55

systems

Laguerre’s method

* next eliminate b and solve for a to give

n
G+ /(n—DnH - G2)

a =

(where the sign is +ve if G>0, -ve if G<0)
« finally proceed with iterations to find x,
— starting fromx > G, H, a
— then use x-a as next (improved) attempt at the root
— repeat and get new a value
— agets small with CUBIC convergence rate
— the tentative root choice is x = x,
— these can be polished afterwards

Unit Il - Root-finding and nonlinear 56
systems

Matlab and polynomials

a polynomial p(x) = Cx" + CX™" + ... + C X + Cpy4q

is represented in Matlab by a vector of coefficients:
c=[c;Cy ... Cpiq]

to evaluate p(x) use px = polyval(c,x)

— xand px can also be vectors of points

Matlab can ...

— make a polynomial with given roots v: ¢ = poly(v)
— find the roots of a polynomial: v = roots(c)
— differentiate a polynomial: d = polyder(c)

do synthetic division of polys: [q,r] = deconv(c,d)

Unit Il - Root-finding and nonlinear 57
systems

Laguerre’s method: example

Find the roots of the polynomial p(x) = x5+ 3x*- 8x3- 12x2 + 16x.

Unit Il - Root-finding and nonlinear 58
systems

The bad and the ugly

to show how bad polynomials can be numerically
.... check out Wilkinson’s perfidious polynomial:

roots(poly(1:20)) ... roots(poly(1:21) ... etc.

Unit Il - Root-finding and nonlinear 59
systems

Newton with numerical derivative?

* how about approximating f(x) local derivative
numerically by
F((x) = [f(x+dx) - f(x)//dx?
* not recommended for single variable problems

— requires one extra function evaluation per step, so
convergence rate is reduced to v2

— if dx is too small roundoff kills you

— if dx is too large convergence goes linear and you might as
well use the initial derivative f'(x,) for every iteration (or the
secant method)

» for multi-dimensional problems it’s a different story ...

Unit Il - Root-finding and nonlinear 60
systems

Systems of nonlinear equations

there are no good general methods for solving
nonlinear systems with more than one equation
consider the simplest 2-dimensional problem:
fixy)=0 g(xy)=0

f&gare

— arbitrary functions with...

— no connection in general
the equations establish zero contours that divide
the xy plane into regions where

- f(x,y)>0 or f(x,y)<0 and

- 9(xy)>0org(xy)<0

Unit Il - Root-finding and nonlinear 61
systems

Systems of nonlinear equations

] Li
no root here! ¢ !
T -oots her
i A —— two roots here
£ pos i
]
1 gpos
\
\
=3
gneg S
v o,
A
Ay
N, ———
N T
T
—— - ~
S, ogneg
/\\ \\\
<, =~
4 -~
; 0. -
- 25,
- 7.
b > gpos
-
s
,
Pl
x
Unit Il - Root-finding and nonlinear 62

systems

Systems of nonlinear equations

solutions to be found are points common to the
zero contours of both fand g

these common points have no special significance
to either for g

to find a solution requires mapping out the contours
for each function, then finding their intersection(s)

in general these contours consist of an unknown
number of disjoint curves in the xy plane

hmm....not an easy problem

Unit Il - Root-finding and nonlinear 63
systems

Simple geometric example

x2+y2=4

ex+y=1
Graph these first and observe two solutions: the intersection of the
circle and the exponential curve at about (-1.8, 0.8) and (1, -1.7)

Unit Il - Root-finding and nonlinear 64
systems

n-variable system

in n-dimensions you need to find points common to
n zero-contour hyper-surfaces of dimension n-1
insight is critical for any hope of success
use the characteristics and special properties of the
functions
solution methods must be problem-specific
is any solution at all expected?
is a unique solution expected?
where are solution(s) expected?
a simple method which sometimes works for not
too nonlinear systems is fixed-point iteration

Unit Il - Root-finding and nonlinear 65
systems

Fixed point iteration: example

Examine the capabilities of fixed point iteration for solving the
system on slide 64.

Unit Il - Root-finding and nonlinear 66
systems

Newton-Rhapson method

» the scalar Newton method can be generalized to
multi-dimensions

» for one nonlinear equation f(x)=0 we had
Xisr = X; = f(X) 1 F(x;)

» this can be written as a linear equation giving the
correction (in terms of the function and its
derivative at the current point)

fx) & = - f(x)
+ this d correction moves the function closer to zero
* how can we generalize this to n-dimensions?

Unit Il - Root-finding and nonlinear 67
systems

Newton-Rhapson method

» consider the problem of zero-ing n functions F; each a
function of n unknowns x;

Fi(X4,-...X,) =0 i=1,..n
* in vector notation we can write F(x) = 0, where F =
(F4, Fy, ...F,) is the vector of functions

« each function F, can be expanded in the
neighbourhood of the point x as a multi-dimensional
Taylor series:

X OF,;
Fi(x+06x) = Fi(x) +) _ a_—rf&rj + O(6x2)
=17

» the matrix of partial derivatives is called the

Jacobian matrix J: ar,
g = c)_:i:j
Unit Il - Root-finding and nonlinear 68

systems

Newton-Rhapson method

* in matrix notation the Taylor exansion is written

F(x 4 0x) = F(x) +J - ox + O(6x?)

* neglect terms higher than first order and set
F(x+38x)=0

+ this gives an equation for the correction vector dx
which moves all the F; functions simultaneously
closer to zero:

Unit Il - Root-finding and nonlinear 69
systems

Practical considerations

* the linear system given in the N-R equation can be
solved by LU decomposition (or other method)

» iteration proceeds by putting
Xpew = Xold + 0X

and checking convergence condition(s)

— check both the functions and the roots (]|F(x)|| < ftol and
|13]] < xtol)

— once either reaches machine precision nothing further will
change

— examine behaviour frequently to ensure the process is
converging on a root, and onto the desired root

— J can be supplied symbolically or by finite differences if
necessary

Unit Il - Root-finding and nonlinear 70
systems

Newton-Rhapson: simple example
flxy) =4 -x2-y2=0
gxy)=1-e-y=0

+ partial derivatives are f, = -2x, f, = -2y, g, = -e* and
gy =-1
« Jacobian matrix is

7= fl f_f; _ —2r —Q.U
Tl oge] et L

* beginning with x, = (1,-1.7) we have to solve the
linear system:

= |] | L =LY
T, =17 { 5y } = [g(1.—1.7) }

Unit Il - Root-finding and nonlinear 7
systems

Newton-Rhapson: simple example (cont.)

-2 3.4 A _ 0.1100

27183 —-1.0 oy T | —0.0183

« solution is (8x, dy) = (0.0043,-0.0298).
« this gives x, = (1.0043,-1.7298)

* now repeat to get x, = (1.004169, -1.729637) which
satisfies very nicely f(x,) = 1e-07, g(x,) = 1e-08

Unit Il - Root-finding and nonlinear 72
systems

Newton-Rhapson: practical considerations

N-R reduces a n-dimensional nonlinear problem to
a linear system in n unknown corrections (the 6
vector)
converges quadratically (like Newton)
— but only if the starting point is near a root
expensive in function evaluations
— e.g. for 2x2 example there are six evals. per step
— nxnrequires n2+n evals. per step
N-R not easy to implement if n is large
can try eliminating variables to reduce the size

— e.g. in the previous example solve for y = 1 - e* and sub.
ineqn 1toget4 - x2-(1-eX)2=0, or 3 - x2 + 2ex- =0,
an equation which can be solved as a nonlinear equation
in one variable (previous methods)

Unit Il - Root-finding and nonlinear 73
systems

Jacobian estimation

for larger systems can simplify the calcs. by
estimating the Jacobian at successive steps in terms
of an earlier Jacobian
e.g. for n equations re-compute J every n steps
example f(x,y) =e*-y=0and g(x,y) =xy-ex=0
start with x, = (0.95, 2.7)
in step 2 keep J fixed at the J of step 1
converges to six decimal precision of exact solution (1,e)
after three iterations

or can use an approximate J which satisfies
B€+1 . 5X1; = 5F§

this is a multi-dimensional generalization of the

secant method, which estimates df/dx (Broyden)

Unit Il - Root-finding and nonlinear 74
systems

Newton-Rhapson & minimization

multi-dimensional minimizing is equivalent to
finding a zero of a gradient function
so why is multi-dimensional minimization relatively
simple compared to root-finding?
the components of the grad are related and satisfy
strong conditions
minimizing is equivalent to sliding down a one-
dimensional surface
root-finding is equivalent to simultaneously
minimizing n independent functions, i.e. sliding
down n surfaces simultaneously

— tradeoffs are needed

— how is progress in one dimension traded against progress

in another?

Unit Il - Root-finding and nonlinear 75
systems

Nonlinear systems: conclusions

apart from the simplest of problems solving nonlinear
systems is a very difficult task

all methods are iterative

there are very few basic methods available

more advanced methods impinge on the study of
nonlinear optimization

Matlab symbolic toolbox can evaluate:

— jacobian(w,v) ... the Jacobian of symbolic column vector w
w.r.t. symbolic row vector v

- diff(S,’x’) the derivative of a symbolic expression S w.r.t x

Unit Il - Root-finding and nonlinear 76
systems

