

Some more terminology

- a linear system is
 - consistent if there is at least one solution and inconsistent if there is no solution
 - homogenous if b = 0, i.e. Ax = 0 and non-homogenous if b $\neq 0$
- the form of the coefficient matrix is used to describe the system
 - triangular if A is a triangular matrix
 - square if A is a square matrix
 - echelon if A is an echelon matrix
 - diagonal if A is a diagonal matrix
- the *augmented matrix* M = [A|b] in block matrix form consists of A with the vector of constants b as an additional column

Unit VI - Linear systems

Some stuff about solutions

- a homogenous system
 - always has the trivial solution x = 0....
 - may have non-trivial solutions as well, i.e. for which $x\neq 0$
- equivalent systems Ax=b have row-equivalent augmented matrices
- equivalent systems have identical solutions so...
- to solve a general system Ax=b we can convert it into an equivalent system which is easier to solve
- row-reduce the augmented matrix to...
 - an echelon form and use back-substitution to get the unknowns x [Gaussian elimination]
 - row canonical form and read off the variables from the entries corresponding to pivots [Gauss-Jordan elimination]

Unit VI - Linear systems

3

9

Unit VI - Linear systems

Unit VI - Linear systems

Unit VI - Linear systems

10

 How to solve a non-homogenous system to solve Ax=b if A is not square and/or singular you can use <i>Gaussian elimination</i> write the augmented matrix [A b] row reduce it to echelon form back substitute to solve for the pivots the free variables are arbitrary constants in the general solution this method is the best practical one even for non-singular square systems 	 Non-homogeneous systems an m×n system Ax=b with augmented matrix M is consistent if and only if rank A = rank M b is in the column space of A a consistent m×n system Ax=b has a unique solution if and only if rank A = n an infinite number of solutions if rank A < n an m×n system Ax=b is consistent for <u>all</u> choices of b if and only if the columns of A span R^m rank A = m
Unit VI - Linear systems 17	Unit VI - Linear systems 18

