Unit VI - Epilogue: Linear Systems

- terminology of linear systems
- homogeneous linear systems
- vector subspace connections
- solution space and nullspace
- non-homogeneous linear systems
- solution set is not a vector space
- particular and general solutions
- existence and uniqueness of solutions
- under- and over-determined systems

Terminology

- an $m \times n$ linear system consists of
- m simultaneous linear equations in...
- n variables
- using matrices we can write $A x=b$ where
- A $m \times n$ is the coefficient matrix
- $\quad \mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ is the vector of unknowns
- $\quad b \in R^{m}$ is the vector of constants
- a solution to the system is a vector x which satisfies $A x=b$
- a particular solution is any specific x which is a solution
- the general solution is a vector x which gives the form of all solutions

Some more terminology

- a linear system is
- consistent if there is at least one solution and inconsistent if there is no solution
- homogenous if $\mathrm{b}=0$, i.e. $\mathrm{Ax}=0$ and non-homogenous if $b \neq 0$
- the form of the coefficient matrix is used to describe the system
- triangular if A is a triangular matrix
- square if A is a square matrix
- echelon if A is an echelon matrix
- diagonal if A is a diagonal matrix
- the augmented matrix $M=[A \mid b]$ in block matrix form consists of A with the vector of constants b as an additional column

Unit VI - Linear systems 3

Some stuff about solutions

- a homogenous system
- always has the trivial solution $\mathrm{x}=0 . \ldots$
- may have non-trivial solutions as well, i.e. for which $x \neq 0$
- equivalent systems $\mathrm{Ax}=\mathrm{b}$ have row-equivalent augmented matrices
- equivalent systems have identical solutions so...
- to solve a general system $A x=b$ we can convert it into an equivalent system which is easier to solve
- row-reduce the augmented matrix to...
- an echelon form and use back-substitution to get the unknowns x [Gaussian elimination]
- row canonical form and read off the variables from the entries corresponding to pivots [Gauss-Jordan elimination]

Unit VI - Linear systems

Solutions of a linear system

- a linear system $A x=b$ has
- no solution OR...
- a unique solution OR...
- an infinite number of solutions
- WHY? [theorem 3.1 in the text]
- suppose $A x_{1}=A x_{2}=b$ and $x_{1} \neq x_{2}$
- then $A\left(x_{1}-x_{2}\right)=A x_{1}-A x_{2}=b-b=0$
- and for any scalar k we have

$$
\mathrm{A}\left[\mathrm{x}_{1}-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right]=\mathrm{Ax}-\mathrm{kA}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=\mathrm{b}-\mathrm{k} 0=\mathrm{b}
$$

- so $x_{1}-k\left(x_{1}-x_{2}\right)$ is a solution of $A x=b$ for any scalar k
- as long as there are an infinite number of scalars [e.g. for a real vector space] there will be an infinite number of solutions to $\mathrm{Ax}=\mathrm{b}$ provided there are more than one

Homogenous system: general solution

- the set of solutions of a homogenous $m \times n$ linear system $A x=0$ is a subspace of R^{n} : the nullspace of A
$-\quad$ its dimension is nullity $(A)=n-r$ where $\operatorname{rank}(A)=r$
- this is the number of parameters in the general solution
- it's also the number of free variables in the echelon form of the row-reduced coefficient matrix [see text p. 134 \& p.179]
- the general solution of $A x=0$ is any vector x_{g} in the nullspace of A
- if $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis for the nullspace of $A \ldots$.
- x_{g} can be written as a linear combination

$$
x_{g}=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}
$$

Non-homogeneous system: solution set

- what about a non-homogenous system $A x=b$?
- it's solution set is definitely not a subspace of R^{n}
- e.g. $A\left(2 x_{1}\right)=2 A x_{1}=2 b \neq b$ in general so the set is not closed under scalar multiples
- in fact the zero vector is not in the solution set of $\mathrm{Ax}=\mathrm{b}$ [see text p.123]
- the associated homogenous system is $\mathrm{Ax}=0$
- the one with the same coefficient matrix as $A x=b$
- we can find the general solution of $A x=b$ using
- a particular solution x_{p} of $A x=b$ and....
- the general solution x_{g} of the associated homogeneous system $A x=0$

Non-homogenous system: general solution

- WHY?
- suppose $A x_{p}=b$ gives some particular solution
- let x be any [i.e. the general] solution of $A x=b$
- then $A\left(x-x_{p}\right)=A x-A x_{p}=b-b=0$
- so $x-x_{p}$ is in the nullspace of A so $x-x_{p}=c_{1} v_{1}+c_{2} v_{2}+\ldots+$ $\mathrm{c}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}$
- solve for $x=x_{p}+\left[c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}\right]=x_{p}+x_{g}$ as required
- now to go the other way suppose $x=x_{p}+x_{g}=x_{p}+c_{1} v_{1}$ $+c_{2} v_{2}+\ldots+c_{k} v_{k}$
$-\quad$ then $A x=A\left[x_{p}+c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}\right]$

$$
\begin{aligned}
& =A x_{p}+c_{1} A v_{1}+c_{2} A v_{2}+\ldots+c_{k} A v_{k} \\
& =b+0+\ldots+0 \\
& =b
\end{aligned}
$$

Example: a non-homogeneous system

[problem 3.12] Find the general solutions of the systems

$$
\begin{array}{rlrl}
x_{1}-3 x_{2}+2 x_{3}-x_{4}+2 x_{5} & =2 & x_{1}+2 x_{2}-3 x_{3}+4 x_{4} & =2 \\
3 x_{1}-9 x_{2}+7 x_{3}-x_{4}+3 x_{5} & =7 & 2 x_{1}+5 x_{2}-2 x_{3}+x_{4} & =1 \\
2 x_{1}-6 x_{2}+7 x_{3}+4 x_{4}-5 x_{5} & =7 & 5 x_{1}+12 x_{2}-7 x_{3}+6 x_{4} & =3
\end{array}
$$

Example: a non-homogeneous system (cont.)

Geometric view in R^{3}

- the general solution of $A x=0$ is a subspace W of R^{3}, e.g. a line through the origin
- the general solution of $\mathrm{Ax}=\mathrm{b}, \mathrm{b} \neq 0$, is NOT a subspace of R^{3}, e.g. it's a line not through the origin

Unit VI - Linear systems

Application: equation of a line in R^{3}

- the line is defined by
- a point on the line: P_{0} with position vector r_{0} and...
- direction vector $v=(a, b, c)$

Application: equation of a line in R^{3}

- a general point P with position vector $r=(x, y, z)$ gives a vector $r-r_{0}$ parallel to v
- so the required relationship is $r-r_{0}=t v$ [where t is any scalar] or $\ldots \mathrm{r}=\mathrm{r}_{0}+\mathrm{tv}$
- solving for t by coordinates gives the parametric equations of the line

$$
(t=) \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

- suitable adjustments are needed if a, b, or $c=0$
- the same equation form applies in R^{n}

Example: equation of a line in R^{3}

[problem 1.22] Find the parametric equations of the line (a) through points $P(1,3,2)$ and $Q(2,5,-6)$, and (b) containing the point $P(1,-2,4)$ and perpendicular to the plane with equation $3 x+5 y+7 z=15$.

How to solve a non-homogenous system

- to solve $A x=b$ if A is square and non-singular you can
- invert A and
- multiply both sides of $A x=b$ on the left by A^{-1} to get ...
- the unique solution $x=A^{-1} b$
- equivalent conditions for a square system $A x=b$ are:
- A is invertible [or, equivalently, non-singular]
- the system is consistent for any vector b
- there is a unique solution for any vector b

How to solve a non-homogenous system

- to solve $A x=b$ if A is not square and/or singular you can use Gaussian elimination
- write the augmented matrix [A | b]
- row reduce it to echelon form
- back substitute to solve for the pivots
- the free variables are arbitrary constants in the general solution
- this method is the best practical one even for nonsingular square systems

Non-homogeneous systems

- an $m \times n$ system $A x=b$ with augmented matrix M is consistent if and only if
- rank A = rank M
- $\quad b$ is in the column space of A
- a consistent $m \times n$ system $A x=b$ has
- a unique solution if and only if rank $A=n$
- an infinite number of solutions if rank $A<n$
- an $m \times n$ system $A x=b$ is consistent for all choices of b if and only if
- the columns of A span R^{m}
- \quad rank $A=m$

Example: a non-homogeneous system
[problem 3.14] For the system $x+2 y+z=3$ $2 x+7 y+a z=b$
(a) Find all values of a so there is a unique solution.
(b) Find all (a, b) so there is more than one solution and find the general solution.

Non-homogeneous systems

- an under-determined system has less equations than unknowns [$\mathrm{m}<\mathrm{n}$]
- an over-determined system has more equations than unknowns [$\mathrm{m}>\mathrm{n}$]

Non-homogeneous systems

- a consistent under-determined system
- always has an infinite number of solutions [rank A $\leq m<n$]
- a consistent over-determined system may have
- a unique solution [rank $A=n$] or..
- an infinite number of solutions [rank $\mathrm{A}<\mathrm{n}$]
- in general an over-determined system
- cannot be consistent for all b [because $\mathrm{n}(<\mathrm{m})$ columns cannot span all of $\left.\mathrm{R}^{\mathrm{m}}\right]$
- often results from a linear fit of experimental data ...leading to the idea of 'best-fit' least-squares fitting SyDe 312see you in 3A

