Unit V - Inner Product Spaces

- real and complex inner products and norms
- applications in R^{3}
- equations of planes and distance
- cross product
- orthonormal sets and bases
- orthogonal matrices
- orthogonal diagonalization
- miscellaneous useful stuff
- p -norms in R^{n}
- positive-definite matrices
- quadratic forms etc.

The main definition

- $\quad \mathrm{V}$ is a real [finite-dimensional] vector space
- for each $\mathrm{u}, \mathrm{v} \in \mathrm{V}$ define a scalar $\langle u, v\rangle$ with the following properties:

1. linear: $\left\langle a u_{1}+b u_{2}, v\right\rangle=a\left\langle u_{1}, v\right\rangle+b\left\langle u_{2}, v\right\rangle$
2. symmetric: $\langle u, v\rangle=\langle v, u\rangle$
3. positive definite: $\langle u, u\rangle \geq 0$, and $\langle u, u\rangle=0$ only if $u=0$

- $\langle u, v\rangle$ is called an inner product of u and v
- the vector space V with the inner product defined is called a (real) inner product space
- real inner product spaces are sometimes called Euclidean spaces

Examples: Real inner product spaces

- the usual dot product of vectors in R^{3} :

$$
\langle u, v\rangle=u \cdot v=\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

- the same dot product can be generalized to R^{n}

$$
u=\left(u^{1}, u^{2}, \cdots, u^{n}\right), v=\left(v^{1}, v^{2}, \cdots, v^{n}\right)
$$

$\langle u, v\rangle=u^{1} v^{1}+u^{2} v^{2}+\cdots+u^{n} v^{n}$

- in $R_{m, n}$ we can define $\langle A, B\rangle=\operatorname{Tr}\left(B^{\top} A\right)$
- the trace $\operatorname{Tr}()$ of a square matrix is the sum of its diagonal entries

Simple examples: Real inner products
[Problem 7.2] $u=(1,2,5), v=(2,-3,5), w=(4,2,-3)$ in R^{3}. Find $u \cdot v$, $u \cdot w, v \cdot w,(u+v) \cdot w,\|u\|,\|v\|$.

A variation: complex inner product

- V is a complex [finite-dimensional] vector space
- for each $\mathrm{u}, \mathrm{v} \in \mathrm{V}$ define a scalar $\langle u, v\rangle$ with the following properties:

1. linear $\left\langle a u_{1}+b u_{2}, v\right\rangle=a\left\langle u_{1}, v\right\rangle+b\left\langle u_{2}, v\right\rangle$
2. conjugate symmetric: $\langle u, v\rangle=\overline{\langle v, u\rangle}$
3. positive definite $\langle u, u\rangle \geq 0$, and $\langle u, u\rangle=0$ only if $u=0$

- $\langle u, v\rangle$ is called a complex inner product of \mathbf{u} and v
- the vector space V with the inner product defined is called a (complex) inner product space
- complex inner product spaces are sometimes called unitary spaces

Examples: Complex inner product spaces

- in C^{3} we have to use the conjugate in the definition of the usual dot product:
$\langle u, v\rangle=u \cdot v=\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right)=x_{1} \overline{x_{2}}+y_{1} \overline{y_{2}}+z_{1} \overline{z_{2}}$
- the same dot product can be generalized to C^{n}
$u=\left(u^{1}, u^{2}, \cdots, u^{n}\right), v=\left(v^{1}, v^{2}, \cdots, v^{n}\right)$
$\langle u, v\rangle=u^{1} \overline{v^{1}}+u^{2} \overline{v^{2}}+\cdots+u^{n} \overline{v^{n}}$
- \quad in $C_{m, n}$ we can define $\langle A, B\rangle=\operatorname{Tr}\left(B^{*} A\right)$
- the conjugate transpose of a complex matrix is $B^{*}=\bar{B}^{T}$

Inner products

- in the second position < , > is linear for real spaces

$$
\left\langle u, a v_{1}+b v_{2}\right\rangle=a\left\langle u, v_{1}\right\rangle+b\left\langle u, v_{2}\right\rangle
$$

-and conjugate linear for complex spaces

$$
\left\langle u, a v_{1}+b v_{2}\right\rangle=\bar{a}\left\langle u, v_{1}\right\rangle+\bar{b}\left\langle u, v_{2}\right\rangle
$$

- if u and v are column vectors in R^{n} the inner product can be written as a matrix product $\langle u, v\rangle=u^{\top} v$
- the matrix product AB can actually be defined this way as inner products of rows of A with columns of B
- the complex congugate is necessary for $\langle u, u\rangle$ to be a real number so we can define the length of a vector....

Definition: Norm of a vector

- this definition applies to both real and complex inner product spaces
- $\langle u, u\rangle$ is a non-negative real number so we can define $\|u\|=\sqrt{\langle u, u\rangle}$
- $\|u\|$ is the norm of the vector u
- this norm is associated with the given inner product
- a vector for which $\|u\|=1$ is called a unit vector
- any non-zero vector u can be normalized to a unit vector 'in the same direction' $\hat{u}=(1 /\|u\|) u$

Simple examples: Complex inner products
[Problem 7.48] Suppose $\langle u, v\rangle=3+2 i$. Find $\langle(2-4 i) u, v\rangle$,
$\langle u,(3+4 i) v\rangle$, and $\langle(3-6 i) u,(5-2 i) v\rangle$.

Examples: Function spaces

- the standard inner product on the space of continuous real-valued functions on $[\mathrm{a}, \mathrm{b}]$:

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t
$$

- if the functions are complex-valued you have to use the conjugate as usual for things to work:

$$
\langle f, g\rangle=\int_{a}^{b} f(t) \overline{g(t)} d t
$$

Norms

- the zero vector is the only vector with norm 0

$$
\|0\|=\langle 0,0\rangle=\langle 0 \mathrm{v}, 0\rangle=0\langle\mathrm{v}, 0\rangle=0
$$

- $\|u-v\|=d(u, v) \geq 0$ is called the distance between vectors u and v
- $\quad\|k u\|=|k|\|u\|$
- note the $|\mathrm{k}|$ means the modulus in complex spaces, or absolute value in real spaces
- triangle inequality $\|u+\mathrm{v}\| \leq\|\mathrm{u}\|+\|\mathrm{v}\|$
- the proof of this last one uses a very important result....

The Cauchy-Schwartz inequality

- for two vectors in a complex inner product space

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|
$$

- we can show this by evaluating $\|u-\langle u, \hat{v}\rangle \hat{v}\|^{2}$ where $\hat{v}=v /\|v\|$ is a unit vector along v
- this is a trick motivated by geometry (see projections later)
- evaluate this norm using the inner product
- simplify using facts about complex numbers
- apply the fact that the norm above is non-negative to get the desired inequality

Angle

- the C-S inequality allows us to define the angle between any two vectors u, v using

$$
\cos \theta=\frac{\langle u, v\rangle}{\|u\|\|v\|}
$$

- for instance in R^{4} with $\mathrm{u}=(1,2,3,4), \mathrm{v}=(-1,0,-2,2)$
$\|u\|^{2}=1+4+9+16=30,\|v\|^{2}=1+4+4=9$, and $\langle u, v\rangle=-1-6+8=1$ so $\cos \theta=1 /(3 \sqrt{ } 30)$
- or... in function spaces, e.g. f and g from problem 7.5 on slide 11
$\langle\mathrm{f}, \mathrm{g}\rangle=-1,\|\mathrm{f}\|=\sqrt{ } 57,\|\mathrm{~g}\|=1$ so $\cos \theta=-1 /(\sqrt{ } 57)$
- the case $\cos \theta=0$ is particularly important.....

Cauchy-Schwartz inequality proof

Orthogonality

- two vectors u, v in an inner product space are orthogonal if $\langle\mathrm{u}, \mathrm{v}\rangle=0$
- only the zero vector is orthogonal to all vectors v :
$\langle 0, v\rangle=\langle 0 \mathrm{v}, \mathrm{v}\rangle=0\langle\mathrm{v}, \mathrm{v}\rangle=0$
$\langle u, v\rangle=0$ all u implies $\langle u, u\rangle=0$ so $u=0$
- orthogonality is symmetric...it's a property of a pair of vectors
- \quad since $\langle u, v\rangle=\langle v, u\rangle=0$
- the concept agrees with the geometric idea of 'perpendicularity' since cos $\theta=0$ so $\theta=\pi / 2$
- extending these geometric concepts to any inner product space is a powerful technique
- e.g. allows consideration of orthogonal functions

Examples: orthogonality

[example 7.6] (a) $u=(1,1,1), v=(1,2,-3)(b)\langle\sin t, \cos t\rangle$ in $C[-\pi, \pi]$.

Examples: orthogonality

[example 7.7] Find a non-zero unit vector orthogonal to both $u=(1,2,3)$ and $v=(2,5,4)$.

Orthogonal projection

- the orthogonal projection of u on v is the vector

$$
\langle u, \hat{v}\rangle \hat{v}=\left\langle u, \frac{v}{\|v\|}\right\rangle \frac{v}{\|v\|}
$$

- C-S says that $\|\operatorname{proj}(u, v)\| \leq\|u\|$
- the proof is based on using $\|u-\operatorname{proj}(u, v)\| \geq 0$

Example: projections

[problem 1.12] For $u=(1,-3,4), v=(3,4,7)$ find $(a) \cos \theta$ (b) $\operatorname{proj}(u, v)$ and (c) $d(u, v)$.

Orthogonal complement

- V is an ips, S is a subset of vectors
- the orthogonal complement of S ['S perp'] is

$$
S^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \text { for all } w \in S\}
$$

- S^{\perp} is a subspace of V :
- $w \in S, u, v \in S^{\perp}$, and a, b scalars then
- $\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle=a(0)+b(0)=0$
- so au+bv $\in S^{\perp}$
- if $S=\{w\}$ we can write w^{\perp} instead of S^{\perp} for simplicity
- if W is supspace of V then
- $\mathrm{W}^{\left(W^{-}\right.}=\{0\}$
- $\left(W^{+}\right)^{+}=W$

Example: orthogonal complement

[problem 7.11] Find a basis for W^{+}if W is the subspace of R^{5} spanned by $u=(1,2,3,-1,2), v=(2,4,7,2,-1)$.

Rowspace and nullspace again

The orthogonal complement of the row space R of a matrix is the nullspace \mathbf{N}

- the previous example illustrates this
- given a basis for R you can find the nullspace N by finding the orthogonal complement R^{\perp}
- given a basis for the nullspace N you can find R by finding the orthogonal complement N^{+}

Applications in R^{3} : equation of a plane

- $w \in R^{3}$ is a nonzero vector
- $\mathrm{w}{ }^{\text {is }}$ is the plane P through the origin and perpendicular to w
- w is called a normal vector of P
- in general we can find the equation of a plane P in R^{3} if we have
- a normal vector n and...
- any point (x_{0}, y_{0}, z_{0}) on P
- let (x, y, z) be the position vector of a point in P
- then the vector $\left(x-x_{0}, y-y_{0}, z-z_{0}\right)$ lies in the plane
- so the required equation is

$$
n \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

Digression: Cross product in R^{3}

- how do you get a normal vector if you are given two vectors lying in a plane in R^{3}, or equivalently the position vectors of three points on the plane?
- use the cross product... but this only applies to R^{3}
- $u, v \in R^{3}$ and define the vector $u \times v \in R^{3}$ by

$$
u \times v=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
u^{1} & u^{2} & u^{3} \\
v^{1} & v^{2} & v^{3}
\end{array}\right|
$$

- $u \times v$ is orthogonal to both u, v [easy to show]
- the direction of $u \times v$ is uniquely defined by the 'right hand thread rule'
- $\quad\|u \times v\|=\|u\|\|v\| \sin \theta$

Example: hyperplane in R^{n}

The previous result applies just the same to hyperplanes in R^{n}. [example 1.6b] Find an equation of the hyperplane in R^{4} with normal vector $n=(4,-2,5,6)$ and passing through (1,3,-4,2).

Some properties of cross product

- $\mathrm{u} \times \mathrm{v}=-\mathrm{v} \times \mathrm{u}$
- $u \times(v+w)=u \times v+u \times w$
- $k(u \times v)=(k u) \times v=u \times(k v)$
- $\mathrm{u} \times 0=0$
- $u \times u=0$
- $u \times(v \times w) \neq(u \times v) \times w$
- $u \times(v \times w)=(u \cdot w) v-(u \cdot v) w$
- the vector lies in the plane determined by w and v

Examples: cross product
[problem1.25] for $u=(2,-3,4), v=(3,1,-2), w=(1,5,3)$. Find $u \times v$ and $u \times w$. Extra: find $u \cdot v \times w, u \times(v \times w)$ and $(u \times v) \times w$.

Equation of a plane in R^{3}

- to return to the equation of a plane P in $\mathrm{R}^{3} \ldots$.
- we had the basic point (r_{0}) normal vector (n) form, in vector notation: $\mathrm{n} \cdot\left(\mathrm{r}-\mathrm{r}_{0}\right)=0$
- given instead (1) two vectors lying in P you can find the normal vector using the cross product or....
- given (2) the position vectors of three points on P you can subtract in pairs to get two vectors lying in P and proceed as in (1)
- the equation of a plane in R^{3} is always of the form $a x+b y+c z+d=0$, where $n=(a, b, c)$ is the normal vector

Example: equation of a plane in R^{3}
Find the equation of the plane through the points $\mathrm{u}=(2,-3,4)$, $v=(3,1,-2), w=(1,5,3)$.

Application: point to plane distance in R^{3}

- let point P with position vector $r_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ \& vector $n=(a, b, c)$ define the equation of a plane
- choose a point Q with position vector $r_{1}=\left(x_{1}, y_{1}, z_{1}\right)$
- we want to calculate the distance D from Q to the plane
- as shown D can be found using a projection

Point to plane distance in R^{3}

- write the plane equation as $a x+b y+c z+d=0$
- calculate the required length D :

$$
\begin{aligned}
D & =|\overrightarrow{P Q} \cdot \hat{n}| \\
& =\frac{\left|\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right) \cdot(a, b, c)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{\left|a\left(x_{1}-x_{0}\right)+b\left(y_{1}-y_{0}\right)+c\left(z_{1}-z_{0}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{\left|a x_{1}+b y_{1}+c z_{1}-\left(a x_{0}+b y_{0}+c z_{0}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

Another geometric view of planes

Example: point to plane distance in R^{3}

Find the distances: (a) from the point $(1,-4,-3)$ to the plane with equation $2 x-3 y+6 z=-1$ and (b) between this plane and the plane with equation $4 x-6 y+12 z=13$.

- another way of viewing a vector equation of a plane is $n \cdot r=n \cdot r_{0}$ or...
- $\mathrm{r} \cdot \mathrm{n}=\mathrm{r}_{0} \cdot \mathrm{n}$ or...
- $\quad \operatorname{proj}(r, n)=\operatorname{proj}\left(r_{0}, n\right)$ which makes sense geometrically...

Orthogonal projection onto a subspace

- we know how to find the orthogonal projection of a vector onto a line
- what about onto a general subspace? say a plane...
- v is decomposed into a sum of two orthogonal vectors:

$$
v=v_{1}+v_{2}
$$

- $v_{1} \in W$ and $v_{2} \in W^{\perp}$
- geometrically we can see that the decomposition is unique

Orthogonal projection onto a subspace

- in general let W is a subspace of an ips V
- then V can be decomposed as the direct sum $\mathbf{V}=\mathbf{W} \oplus \mathbf{W}^{\perp}$
- this is an important result [see problem 7.28]
- for instance if A is a matrix transformation $\mathrm{V} \rightarrow \mathrm{U}$ the decomposition is $\mathrm{V}=$ rowspace $\mathrm{A} \oplus$ nullspace A
- any vector $\mathrm{v} \in \mathrm{V}$ can be decomposed uniquely as $v=v_{1}+v_{2}$ with $v_{1} \in W$ and $v_{2} \in W^{\perp}$
- question: for a general subspace W how do we calculate $\operatorname{proj}(\mathrm{v}, \mathrm{W})$?
- to answer this we need the concept of orthogonal sets and bases....

Orthogonal sets

- a set of non-zero vectors $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is an orthogonal set if $\left\langle\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right\rangle=0$ for $\mathrm{i} \neq \mathrm{j}$
- if, in addition, $\left\langle\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right\rangle=1$ it is an orthonormal set of vectors
- orthogonal sets are linearly independent
- an important result [see problem 7.15]
- examples:
- the standard basis vectors are an orthonormal basis for R^{n}
- the vectors $\{1, \cos \mathrm{t}, \cos 2 \mathrm{t}, \ldots, \sin \mathrm{t}, \sin 2 \mathrm{t}, \ldots\}$ are an orthogonal set in $[[-\pi, \pi] \ldots$ used in Fourier analysis
- the basis $\{(1,2),(1,-1)\}$ for R^{2} is not an orthogonal basis

Orthogonal bases

- let $\left\{u_{1}, u_{1}, \ldots, u_{n}\right\}$ be an orthogonal basis for V
- express a vector v in terms of this basis:

$$
v=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}
$$

- now calculate $\left\langle\mathrm{v}, \mathrm{u}_{\mathrm{i}}\right\rangle=\left\langle\mathrm{a}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right\rangle=\mathrm{a}_{\mathrm{i}}\left\langle\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right\rangle$
- so we can solve for the scalars

a_{i} called Fourier coefficients of v	$a_{i}=\frac{\left\langle v, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}$
with respect to the $\left\{\mathrm{u}_{\mathrm{i}}\right\}$ basis	

- then the decomposition of v is

$$
v=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}+\frac{\left\langle v, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2}+\cdots+\frac{\left\langle v, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle} u_{n}
$$

- or
$v=\operatorname{proj}\left(v, u_{1}\right)+\operatorname{proj}\left(v, u_{2}\right)+\cdots+\operatorname{proj}\left(v, u_{n}\right)$
Unit V - Inner product spaces

Example: orthogonal bases
[problem 7.13] $\mathrm{S}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$ where $\mathrm{u}_{1}=(1,1,0,-1), \mathrm{u}_{2}=(1,2,1,3)$, $u_{3}=(1,1,-9,2), u_{4}=(16,-13,1,3)$ is an orthogonal basis. Find the coordinates of a general vector ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) with respect to S .
....Example: orthogonal bases

Orthogonal projection onto a subspace

- we can now answer the question asked on slide $38 .$. how do you calculate $\operatorname{proj}(\mathrm{v}, \mathrm{W})$?
- let $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ be an orthogonal basis for W
- then we can define $\operatorname{proj}(\mathrm{v}, \mathrm{W})$ by

$$
\operatorname{proj}(v, W)=\operatorname{proj}\left(v, u_{1}\right)+\operatorname{proj}\left(v, u_{2}\right)+\cdots+\operatorname{proj}\left(v, u_{r}\right)
$$

- this o n I y works because the basis is orthogonal

Projection onto a subspace

- illlustrating for the plane...

Example: projection onto a subspace

[problem 7.23a] Find the projection of $v=(1,3,5,7)$ onto the subspace W spanned by $\left\{u_{1}, u_{2}\right\}$ where $u_{1}=(1,1,1,1), u_{2}=(1,-3,4,-2)$.

Example: projection onto a subspace [problem 7.23a] Find the projection of $v=(1,3,5,7)$ onto the subspace W spanned by $\left\{u_{1}, u_{2}\right\}$ where $u_{1}=(1,1,1,1), u_{2}=(1,-3,4,-2)$

Orthonormal bases

- if $\left\{\hat{u}_{1}, \hat{u}_{2}, \cdots, \hat{u}_{n}\right\}$ is an orthonormal basis things can be written more neatly....
- we get simply $a_{i}=\left\langle v, \hat{u}_{i}\right\rangle$
- and $v=\left\langle v, \hat{u}_{1}\right\rangle \hat{u}_{1}+\left\langle v, \hat{u}_{2}\right\rangle \hat{u}_{2}+\cdots+\left\langle v, \hat{u}_{n}\right\rangle \hat{u}_{n}$
- which, of course, gives exactly the same formula when written as projections
- the last question to ask is how to proceed if you have a basis but it isn't orthogonal?
- there is a simple procedure to make it orthogonal....

Gramm-Schmidt algorithm

- this procedure converts any old basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of V into an orthogonal basis
- define

$$
\begin{aligned}
& \mathrm{w}_{1}=\mathrm{u}_{1} \\
& \mathrm{w}_{2}=\mathrm{u}_{2}-\operatorname{proj}\left(\mathrm{u}_{2}, \mathrm{w}_{1}\right) \\
& \mathrm{w}_{3}=\mathrm{u}_{3}-\operatorname{proj}\left(\mathrm{u}_{3}, \mathrm{w}_{1}\right)-\operatorname{proj}\left(\mathrm{u}_{3}, \mathrm{w}_{2}\right)
\end{aligned}
$$

.....and so on

- then $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is an orthogonal basis of V
- the vectors w_{i} can easily be normalized to form an orthonormal basis of V

Why Gramm-Schmidt works: geometrically

Why Gramm-Schmidt works: algebraically

- let $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{r}}\right\}$ be an orthogonal set, v a vector
- use the coefficients on slide 40 :

$$
a_{i}=\frac{\left\langle v, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}
$$

- define $v^{\prime}=v-a_{1} u_{1}-a_{2} u_{2}-\ldots-a_{r} u_{r}$
- then $\left\langle v^{\prime}, u_{i}\right\rangle=\left\langle v-a_{1} u_{1}-a_{2} u_{2}-\cdots-a_{r} u_{r}, u_{i}\right\rangle$

$$
=\left\langle v, u_{i}\right\rangle-a_{i}\left\langle u_{i}, u_{i}\right\rangle
$$

$=\left\langle v, u_{i}\right\rangle-\frac{\left\langle v, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}\left\langle u_{i}, u_{i}\right\rangle$
$=\left\langle v, u_{i}\right\rangle-\left\langle v, u_{i}\right\rangle$
$=0$

- so v^{\prime} is orthogonal to ALL the u_{i} vectors

Example: Gramm-Schmidt algorithm

[example 7.10] Find an orthonormal basis for the subspace W of R^{4} spanned by $\left\{u_{1}, u_{2}, u_{3}\right\}$ where $u_{1}=(1,1,1,1), u_{2}=(1,2,4,5) u_{3}=(1,-3,-4,-2)$.

Gramm-Schmidt in practice

- G-S is not a very robust numerical algorithm, but it's valuable for important theoretical reasons
- e.g. construction of the Legendre polynomials in the next example
- you won't usually have more than three basis vectors because the calculations can be tedious
- to avoid messy arithmetic clear all fractions as you make your choice for each w_{i} vector
- any multiple of each w_{i} will do the job just as well
- normalize all the w_{i} vectors at the very last step once you have the orthogonal basis
- the procedure works on any linearly independent set - it gives an orthogonal basis for the subspace it spans

Example: constructing Legendre polynomials

[example 7.11] $\mathrm{P}_{3}(\mathrm{t})$ polynomial space with $\langle\mathrm{f}, \mathrm{g}\rangle$ defined on the interval [-1,1]. Apply G-S to the mononomial basis to find an orthogonal basis.
.... Example: constructing Legendre polynomials

Example: projection onto a subspace

[problem 7.23b] Find the projection of $v=(1,3,5,7)$ onto the subspace W spanned by $\left\{u_{1}, u_{2}\right\}$ where $u_{1}=(1,1,1,1), u_{2}=(1,2,3,2)$.

Example: orthogonal basis

[problem 7.12] Find an orthogonal basis for w^{\perp} where $w=(1,2,3,1)$...an alternative approach without using G-S.

Example: orthogonal matrices

[problem 7.32] Find an orthogonal matrix whose first row is $u_{1}=(1 / 3,2 / 3,2 / 3)$.

- a real $n \times n$ matrix P is orthogonal if $P^{-1}=P^{\top}$
- this gives $\mathrm{P}^{\top} \mathrm{P}=\mathrm{PP}^{\top}=1$
- if (and only if) we use the standard i.p. \langle,$\rangle on$ R^{n} the following are equivalent
- P is orthogonal
- the rows of P are an orthonormal basis of R^{n}
- the columns of P are an orthonormal basis of R^{n}
- examples:
$\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\ 2 / \sqrt{6} & -1 / \sqrt{6} & -1 / \sqrt{6}\end{array}\right] \quad\left[\begin{array}{rr}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

Orthogonal matrices

- a matrix P is a change of basis matrix between two orthonormal bases if and only if it is orthogonal [see problem 7.37]
- a more accurate [better] term for "orthogonal matrix' would be 'orthonormal matrix' but the other is traditional
- an important application involves orthogonal diagonalization of a matrix [or operator]
- when can we find an orthogonal P so that $\mathrm{P}^{\top} \mathrm{AP}$ is diagonal?

Diagonalization of real symmetric matrices

- if A is a real symmetric matrix then:
- A has only real eigenvalues
- the eigenvectors of A corresponding to distinct eigenvalues are orthogonal
- these results give a method to orthogonally diagonalize any real symmetric matrix

1. find the eigenvalues and an eigenvector for each nonrepeated eigenvalue
2. for any repeated e.val. find an orthogonal basis of eigenvectors for its eigenspace
3. normalize the whole set of eigenvectors
4. write the normalized eigenvectors as the columns of P

Example: orthogonal diaqonalization
[problem 9.25] Orthogonally diagonalize $\quad B=\left[\begin{array}{rrr}11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4\end{array}\right]$

Quadratic forms

- a quadratic form in n real variables x_{1}, \ldots, x_{n} is an expression of type $q\left(x_{1}, \ldots, x_{n}\right)=\sum a_{i j} x_{i} x_{j}$
- e.g. $2 x^{2}-4 y^{2}+3 x y+y z$ is a quadratic form in three variables x, y, z
- we'll write $u=\left(x_{1}, \ldots, x_{n}\right)$ when needed so the quadratic form is $q(u)$
- or sometimes just $q(x, y, z)$
- the terms of type $\mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$ with $\mathrm{i} \neq \mathrm{j}$ are called crossproduct terms
- a quadratic form can be represented using a matrix product $u^{\top} A u$ with a symmetric matrix A....

Quadratic forms

- $q(x, y, z)=a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+a_{12} x y+a_{13} x z+a_{23} y z$

$$
=\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & a_{12} / 2 & a_{13} / 2 \\
a_{12} / 2 & a_{22} & a_{23} / 2 \\
a_{13} / 2 & a_{23} / 2 & a_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- a quadratic form is diagonal if it is a sum of squares
- i.e. there are no cross-terms so....
- the matrix A is diagonal
- recall [slide 7] that an inner product $\langle u, v\rangle$ can be written using column vectors as $u^{\top} v$
- so a quadratic form $q(u)$ can also be associated with the standard inner product in R^{n}
$-\quad q(u)=u^{\top} A u=u^{\top}(A u)=\langle u, A u\rangle=\langle A u, u\rangle$
- A must be a real symmetric matrix

Diagonalizing a quadratic form

- the quadratic form $q(u)=u^{\top} A u$ can be orthogonally diagonalized by a change of variables
- find a P which orthogonally diagonalizes A to D
- put $u=P v$
- then $u^{\top} A u=(P v)^{\top} A(P v)=v^{\top} P^{\top} A P v=v^{\top} D v$

Example: diagonalizing a quadratic form
[problem 9.26] Find an orthogonal substitution which diagonalizes $q(x, y)=x^{2}+6 x y-7 y^{2}$.

...Example: quadratic form

Transforming a conic to standard form

- a quadratic equation in R^{2} is an expression of the form $a x^{2}+2 b x y+c y^{2}+d x+e y+f=0$
- the associated quadratic form is $q(x, y)=a x^{2}+2 b x y+c y^{2}$
- the cross-term represents a rotation away from standard form...
- the principal axes are not the xy axes
- principal axes are given by the e.vecs of the A matrix
- the linear terms represent a translation away from the origin
- orthogonal diagonalization of the form provides a change of variables that rotates the conic to standard axes
- a translation (complete the square) can then put it into standard position
- the same can be done for quadric surfaces in R^{3}

Positive definite matrix

- if A is a symmetric $n \times n$ matrix then

$$
\lambda_{1} \geq \mathrm{u}^{\top} \mathrm{Au} \geq \lambda_{\mathrm{n}} \text { where }
$$

- $\quad \lambda_{1}$ is the largest e.val. of A
- λ_{n} is the smallest e.val. of A
- u is constrained so $\|u\|=1$ in the usual inner product of R^{n}
- $\quad u^{\top} A u=\lambda_{k}$ if u is an e.vec. of A associated with λ_{k}
- a symmetric matrix A is positive-definite if $q(u)=$ $u^{\top} \mathrm{Au}>0$ for all non-zero vectors u
- so.....a symmetric matrix is positive definite if and only if all the e.vals. are positive
- there are other tests for positive definiteness
- the property is very important in both physical and numerical applications

Diagonally dominant matrices

- A is diagonally dominant if:

$$
\left|a_{i \mathrm{i}}\right|>\sum\left|a_{\mathrm{ij}}\right|, i \neq j, i=1, \ldots n
$$

- a diagonally dominant matrix is positive definite if it is:
- symmetric and
- has all main diagonal entries positive
- ...but the converse is false
- there are positive definite matrices that are not diagonally dominant [find one]
- there are also positive definite matrices that are diagonally dominant and not symmetric [any one with all positive eigenvalues]

Symmetric positive definite matrices

- symmetric positive definite matrices appear in many applications:
- solution of partial differential equations ... heat conduction, mass diffusion etc (Poisson and Laplace equations)
- analysis of stress
- linear regression models
- optimization problems

p -norms in R^{n}

- for $u=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}\left[\begin{array}{ll}C^{n}\end{array}\right]$ we can define the p-norm $\|u\|_{p}=\left(\left|a_{1}\right|^{p}+\cdots+\left|a_{n}\right|^{p}\right)^{1 / p}$
- interesting special cases:

$$
\begin{aligned}
\|u\|_{1} & =\left|a_{1}\right|+\cdots+\left|a_{n}\right| \\
\|u\|_{2} & =\sqrt{\left|a_{1}\right|^{2}+\cdots+\left|a_{n}\right|^{2}} \\
\|u\|_{\infty} & =\max \left(\left|a_{1}\right|, \cdots,\left|a_{n}\right|\right)
\end{aligned}
$$

- the 2-norm is associated with the standard innner product in R^{n}
- distance in R^{n} can be measured using any of these p -norms
- distances and lengths of vectors will, of course, be different for each p-norm

Unit p-norm sets in R^{2}

- consider R^{2} and define S_{p} to be all vectors of unit p-length i.e. $\|u\|_{p}=1$

Unit V - Inner product spaces

