

Inner products

• in the second position < , > is linear for real spaces

 $\langle u, av_1 + bv_2 \rangle = a \langle u, v_1 \rangle + b \langle u, v_2 \rangle$

.....and conjugate linear for complex spaces

 $\langle u, av_1 + bv_2 \rangle = \overline{a} \langle u, v_1 \rangle + \overline{b} \langle u, v_2 \rangle$

- if u and v are <u>column vectors</u> in Rⁿ the inner product can be written as a matrix product $\langle u, v \rangle = u^T v$
 - the matrix product AB can actually be defined this way as inner products of rows of A with columns of B
- the complex congugate is necessary for $\langle u, u \rangle$ to be a real number so we can define the length of a vector.....

7

9

Unit V - Inner product spaces

Definition: Norm of a vector

- this definition applies to both real and complex inner product spaces
- $\langle u,u \rangle$ is a non-negative real number so we can define $||u|| = \sqrt{\langle u,u \rangle}$
- ||u|| is the norm of the vector u
 this norm is associated with the given inner product
 - a vector for which ||u|| = 1 is called a *unit vector*
- any non-zero vector u can be *normalized* to a unit vector 'in the same direction' $\hat{u} = (1/||u||)u$

Unit V - Inner product spaces

Simple examples: Complex inner products

Unit V - Inner product spaces

[Problem 7.48] Suppose $\langle u, v \rangle$ = 3+2i. Find $\langle (2-4i)u, v \rangle$, $\langle u, (3+4i)v \rangle$, and $\langle (3-6i)u, (5-2i)v \rangle$.

Examples: Function spaces

the *standard* inner product on the space of continuous <u>real-valued functions</u> on [a,b]:

$$\langle f,g\rangle = \int_{a}^{b} f(t)g(t)dt$$

 if the functions are complex-valued you have to use the conjugate as usual for things to work:

$$\langle f,g\rangle = \int_a^b f(t)\overline{g(t)}dt$$

Unit V - Inner product spaces

10

8

Examples: Function spaces [Problem 7.5] Find $\langle f,g \rangle$, $\langle f,h \rangle$, $ f $, $ g $ and normalize g, with $f(t)=t+2$, $g(t)=3t-2$, and $h(t)=t^2-2t-3$. The inner product and norm are defined on the interval [0,1].	 Norms the zero vector is the only vector with norm 0 0 = ⟨0,0⟩ = ⟨0v,0⟩ = 0⟨v,0⟩ = 0 u-v = d(u,v) ≥ 0 is called the <i>distance</i> between vectors u and v ku = k u note the k means the modulus in complex spaces, or absolute value in real spaces triangle inequality u+v ≤ u + v the proof of this last one uses a very important result
Unit V - Inner product spaces 11	Unit V - Inner product spaces 12

Angle• the C-S inequality allows us to define the angle between any two vectors u,v using $\cos \theta = \frac{\langle u, v \rangle}{\ u\ \ v\ }$ • for instance in R ⁴ with u=(1,2,3,4), v = (-1,0,-2,2) $\ u ^2 = 1+4+9+16 = 30, \ v ^2 = 1+4+4 = 9, and\langle u, v \rangle = -1.6+8 = 1 so \cos \theta = 1/(3\sqrt{30})• or in function spaces, e.g. f and g from problem7.5 on slide 11\langle f, g \rangle = -1, \ f\ = \sqrt{57}, \ g\ = 1 so \cos \theta = -1/(\sqrt{57})• the case \cos \theta = 0 is particularly important$	Orthogonality • two vectors u,v in an inner product space are orthogonal if (u,v) = 0 • only the zero vector is orthogonal to all vectors v: (0,v) = (0v,v) = 0 (v,v) = 0 (u,v) = 0 all u implies (u,u) = 0 so u = 0 • orthogonality is symmetricit's a property of a pair of vectors - since (u,v) = (v,u) = 0 • the concept agrees with the geometric idea of 'perpendicularity' since cos θ = 0 so θ = π/2 • extending these geometric concepts to <u>any</u> inner product space is a powerful technique - e.g. allows consideration of orthogonal functions
Unit V - Inner product spaces 15	onii v - inner product spaces is

- a set of non-zero vectors {u₁, u₂, ..., u_n} is an orthogonal set if ⟨u_i,u_j⟩ = 0 for i≠j
- if, in addition, $\langle u_i, u_i \rangle$ = 1 it is an orthonormal set of vectors
- orthogonal sets are linearly independent
- an important result [see problem 7.15]
- examples:
 - the standard basis vectors are an orthonormal basis for Rⁿ
 - the vectors {1, cos t, cos 2t, ..., sin t, sin 2t, ...} are an orthogonal set in C[- π , π]....used in Fourier analysis
 - the basis {(1,2), (1,-1)} for R^2 is \underline{not} an orthogonal basis

Unit V - Inner product spaces

- let {u₁, u₁, ..., u_n} be an <u>orthogonal</u> basis for V
- express a vector v in terms of this basis:
 v = a₁u₁ + a₂u₂ + ... + a_nu_n
- now calculate $\langle v, u_i \rangle = \langle a_i u_i, u_i \rangle = a_i \langle u_i, u_i \rangle$
- so we can solve for the scalars a_i called *Fourier coefficients* of v $a_i =$
- with respect to the {u_i} basis
 then the decomposition of v is

or

$$v = \frac{\langle v, u_1 \rangle}{\langle u_1 \rangle} u_1 + \frac{\langle v, u_2 \rangle}{\langle u_2 \rangle} u_2 + \dots + \frac{\langle v, u_n \rangle}{\langle u_n \rangle} u_2$$

Unit V - Inner product spaces

$$\langle u_1, u_1 \rangle$$
 $\langle u_2, u_2 \rangle$ $\langle u_n, u_n \rangle$

 $v = \operatorname{proj}(v, u_1) + \operatorname{proj}(v, u_2) + \dots + \operatorname{proj}(v, u_n)$

40

 $\langle v, u_i \rangle$

 $\overline{\langle u_i, u_i \rangle}$

 Example: orthogonal bases
Example: orthogonal bases

 [problem 7.13] S=(u,u_2,u_3,u_4) where u_t=(1,1,0,-1), u_2=(1,2,1,3), u_3=(1,1,-9,2), u_4=(16,-13,1,3) is an orthogonal basis. Find the coordinates of a general vector (a,b,c,d) with respect to S.
Example: orthogonal bases

 Unit V - Inner product spaces
 41
 Unit V - Inner product spaces
 42

39

Example: constructing Legendre polynomials [example 7.11] $P_3(t)$ polynomial space with $\langle f,g \rangle$ defined on the interval [-1,1]. Apply G-S to the mononomial basis to find an orthogonal basis.	Example: constructing Legendre polynomials
Unit V - Inner product spaces 53	Unit V - Inner product spaces 54

Example: projection onto a subspace	Example: projection onto a subspace
[problem 7.23b] Find the projection of v = (1,3,5,7) onto the subspace W spanned by $\{u_1,u_2\}$ where $u_1=(1,1,1,1)$, $u_2=(1,2,3,2)$.	
Unit V - Inner product spaces 55	Unit V - Inner product spaces 56

 Quadratic forms a <i>quadratic form</i> in n real variables x₁,, x_n is an expression of type q(x₁,, x_n) = ∑ a_{ij}x_ix_j e.g. 2x² - 4y² + 3xy + yz is a quadratic form in three variables x,y.z we'll write u = (x₁,, x_n) when needed so the quadratic form is q(u) or sometimes just q(x,y.z) the terms of type a_{ij}x_ix_j with i≠j are called <i>cross-product</i> terms a quadratic form can be represented using a matrix product u^TAu with a symmetric matrix A 	$\begin{array}{rcl} & \textbf{Quadratic forms} \\ \bullet & q(x,y,z) &= a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + a_{12}xy + a_{13}xz + a_{23}yz \\ &= \left[x \ y \ z \right] \left[\begin{array}{c} a_{11} & a_{12}/2 & a_{13}/2 \\ a_{12}/2 & a_{23}/2 & a_{33} \end{array} \right] \left[\begin{array}{c} x \\ y \\ z \end{array} \right] \\ \bullet & \textbf{a quadratic form is diagonal if it is a sum of squares \\ &- & \textbf{i.e. there are no cross-terms so} \\ &- & \textbf{the matrix A is diagonal} \\ \bullet & \textbf{recall [Slide 7] that an inner product \langle u,v\rangle can be \\ written using column vectors as u^Tv \\ \bullet & \textbf{so a quadratic form q(u) can also be associated with \\ \textbf{the standard inner product in R^n \\ &- & q(u) = u^TAu = u^T(Au) = \langle u,Au \rangle = \langle Au,u \rangle \\ &- & A must be a real symmetric matrix \end{array}$
Unit V - Inner product spaces 65	Unit V - Inner product spaces 66

Example: quadratic form	 Transforming a conic to standard form a quadratic equation in R² is an expression of the form ax² + 2bxy + cy² + dx + ey + f = 0 the associated quadratic form is q(x,y) = ax² + 2bxy + cy² the cross-term represents a rotation away from standard form the principal axes are not the xy axes principal axes are given by the e.vecs of the A matrix the linear terms represent a translation away from the origin orthogonal diagonalization of the form provides a change of variables that rotates the conic to standard axes a translation (complete the square) can then put it into standard position the same can be done for <i>quadric surfaces</i> in R³
Unit V - Inner product spaces 69	Unit V - Inner product spaces 70

