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Unit V - Inner Product Spaces

• real and complex inner products and norms

• applications in R3

– equations of planes and distance

– cross product

• orthonormal sets and bases

– orthogonal matrices

– orthogonal diagonalization

• miscellaneous useful stuff

– p-norms in Rn

– positive-definite matrices

– quadratic forms etc.
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The main definition

• V is a real [finite-dimensional] vector space

• for each u,v!V define a scalar             with the
following properties:

1.  linear:

2.  symmetric:

3.  positive definite:

•          is called an inner product of u and v

• the vector space V with the inner product defined is
called a (real) inner product space

– real inner product spaces are sometimes called Euclidean
spaces
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Examples: Real inner product spaces

• the usual dot product of vectors in R3:

• the same dot product can be generalized to Rn

• in Rm,n we can define "A,B# = Tr(BTA)

– the trace Tr ( ) of a square matrix is the sum of its diagonal

entries
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Simple examples: Real inner products

[Problem 7.2] u = (1,2,5), v = (2,-3,5), w = (4,2,-3) in R3. Find u!v,

u!w, v!w, (u+v)!w, ||u||, ||v||.
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A variation: complex inner product

• V is a complex [finite-dimensional] vector space

• for each u,v!V define a scalar             with the
following properties:

1.  linear

2.  conjugate symmetric:

3.  positive definite

•        is called a complex inner product of u and v

• the vector space V with the inner product defined is
called a (complex) inner product space

– complex inner product spaces are sometimes called
unitary spaces
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Examples: Complex inner product spaces

• in C3 we have to use the conjugate in the definition

of the usual dot product:

• the same dot product can be generalized to Cn

• in Cm,n we can define "A,B# = Tr(B*A)

– the conjugate transpose of a complex matrix is
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Inner products

• in the second position < , > is linear for real spaces

• .....and conjugate linear for complex spaces

• if u and v are column vectors in Rn the inner product
can be written as a matrix product "u,v# = uTv

– the matrix product AB can actually be defined this way as
inner products of rows of A with columns of B

• the complex congugate is necessary for "u,u# to be a
real number so we can define the length of a
vector......
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Definition: Norm of a vector

• this definition applies to both real and complex

inner product spaces

• "u,u# is a non-negative real number so we can

define

• ||u|| is the norm of the vector u

– this norm is associated with the given inner product

• a vector for which ||u|| = 1 is called a unit vector

• any non-zero vector u can be normalized to a unit

vector ‘in the same direction’
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Simple examples: Complex inner products

[Problem 7.48] Suppose "u,v# = 3+2i. Find "(2-4i)u, v#,

"u, (3+4i)v#, and "(3-6i)u, (5-2i)v#.
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Examples: Function spaces

• the standard inner product on the space of
continuous real-valued functions on [a,b]:

• if the functions are complex-valued you have to use
the conjugate as usual for things to work:
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Examples: Function spaces

[Problem 7.5] Find "f,g#, "f,h#, ||f||, ||g|| and normalize g, with

f(t)=t+2, g(t)=3t-2, and h(t)= t2-2t-3. The inner product and norm are

defined on the interval [0,1].
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Norms

• the zero vector is the only vector with norm 0
||0|| = "0,0# = "0v,0# = 0"v,0# = 0

• ||u-v|| = d(u,v) ! 0 is called the distance between
vectors u and v

• ||ku|| = |k| ||u||
– note the |k| means the modulus in complex spaces, or

absolute value in real spaces

• triangle inequality ||u+v|| " ||u|| + ||v||
– the proof of this last one uses a very important result....
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The Cauchy-Schwartz inequality

• for two vectors in a complex inner product space

    | "u, v# | ! ||u|| ||v||

• we can show this by evaluating

where               is a unit vector along v

– this is a trick motivated by geometry (see projections later)

– evaluate this norm using the inner product

– simplify using facts about complex numbers

– apply the fact that the norm above is non-negative to get
the desired inequality

Unit V - Inner product spaces 14

Cauchy-Schwartz inequality proof
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Angle

• the C-S inequality allows us to define the angle
between any two vectors u,v using

• for instance in R4 with u=(1,2,3,4), v = (-1,0,-2,2)
||u||2 =  1+4+9+16 = 30, ||v||2 =  1+4+4 = 9, and

"u,v# = -1-6+8 = 1 so cos $ = 1/(3#30)

• or... in function spaces, e.g. f and g from problem
7.5 on slide 11

 " f,g # = -1, || f || = #57, || g || = 1 so cos $ = -1/(#57)

• the case cos $ = 0 is particularly important.....
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Orthogonality

• two vectors u,v in an inner product space are
orthogonal if "u,v# = 0

• only the zero vector is orthogonal to all vectors v:
 "0,v# = "0v,v# = 0"v,v# = 0

 "u,v# = 0 all u implies "u,u# = 0 so u = 0

• orthogonality is symmetric...it’s a property of a pair
of vectors

– since "u,v# = "v,u# = 0

• the concept agrees with the geometric idea of
‘perpendicularity’ since cos $ = 0 so $ = %/2

• extending these geometric concepts to any inner
product space is a powerful technique

– e.g. allows consideration of orthogonal functions
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Examples: orthogonality

[example 7.6] (a) u=(1,1,1), v=(1,2,-3) (b) "sin t, cos t# in C[-%,%].
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Examples: orthogonality

[example 7.7] Find a non-zero unit vector orthogonal to both

u=(1,2,3) and v=(2,5,4).
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Orthogonal projection

• the orthogonal projection of u on v is the vector

• C-S says that ||proj(u,v)|| " ||u||
– the proof is based on using ||u-proj(u,v)|| ! 0
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Orthogonal projection

• the scalar          is called the component of u
along v

– in real ips this may be a positive or negative value

– in complex ips this may have any complex value

• two vectors u,v are
– orthogonal if and only if proj(u,v) = 0

– linearly dependent if and only if proj(u,v) = u

• we will generalize these concepts to projections
onto a subspace, but for now an illustration with
a single vector...
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Example: projections

[problem 1.12] For u=(1,-3,4), v=(3,4,7) find (a) cos $

(b) proj(u,v) and (c) d(u,v).
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Orthogonal complement

• V is an ips, S is a subset of vectors

• the orthogonal complement of S [‘S perp’] is

• S& is a subspace of V:
– w!S, u,v!S&, and a,b scalars then

– "au+bv,w# = a"u,w# + b"v,w# =a(0) + b(0) = 0

– so au+bv!S&

• if S = {w} we can write w& instead of S& for
simplicity

• if W is supspace of V then
– W'W& = {0}

– (W&)& = W

Unit V - Inner product spaces 23

Example: orthogonal complement

[problem 7.11] Find a basis for W& if W is the subspace of R5

spanned by u=(1,2,3,-1,2), v=(2,4,7,2,-1).
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Rowspace and nullspace again

The orthogonal complement of the row space R of

a matrix is the nullspace N
– the previous example illustrates this

– given a basis for R you can find the nullspace N by
finding the orthogonal complement R&

– given a basis for the nullspace N you can find R by
finding the orthogonal complement N&
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Applications in R3: equation of a plane

• w!R3 is a nonzero vector

• w& is the plane P through the origin and
perpendicular to w

• w is called a normal vector of P

• in general we can find the equation of a plane P
in R3 if we have

– a normal vector n and...

– any point (x0, y0, z0) on P

• let (x,y,z) be the position vector of a point in P

• then the vector (x-x0, y-y0, z-z0) lies in the plane

• so the required equation is

n ! (x-x0, y-y0, z-z0) = 0
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Example: hyperplane in Rn

The previous result applies just the same to hyperplanes in Rn.

[example 1.6b] Find an equation of the hyperplane in R4 with

normal vector n = (4,-2,5,6) and passing through (1,3,-4,2).
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Digression: Cross product in R3

• how do you get a normal vector if you are given
two vectors lying in a plane in R3, or equivalently
the position vectors of three points on the plane?

• use the cross product...but this only applies to R3

• u,v!R3 and define the vector u(v!R3 by

–  u(v is orthogonal to both u,v [easy to show]

– the direction of u(v is uniquely defined by the ‘right
hand thread rule’

– ||u(v|| = ||u|| ||v|| sin $
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Example: cross product

Show that u(v is orthogonal to both u and v by evaluating

u!u(v and v!u(v [is this notation ambiguous?].
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Some properties of cross product

• u(v = - v(u

• u((v+w) = u(v + u(w

• k(u(v) = (ku)(v = u((kv)

• u(0 = 0

• u(u = 0

• u((v(w) $ (u(v)(w

• u((v(w) = (u!w)v - (u!v)w

– the vector lies in the plane determined by w and v
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Examples: cross product

[problem1.25] for u=(2,-3,4), v=(3,1,-2), w=(1,5,3). Find u(v

and u(w. Extra: find u!v(w, u((v(w) and (u(v)(w.
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Equation of a plane in R3

• to return to the equation of a plane P in R3....

• we had the basic point (r0) normal vector (n)
form, in vector notation: n! (r-r0) = 0

• given instead (1) two vectors lying in P you can
find the normal vector using the cross product
or....

• given (2) the position vectors of three points on
P you can subtract in pairs to get two vectors
lying in P and proceed as in (1)

• the equation of a plane in R3 is always of the
form ax+by+cz+d = 0, where n = (a,b,c) is the
normal vector
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Example: equation of a plane in R3

Find the equation of the plane through the points u=(2,-3,4),

v=(3,1,-2), w=(1,5,3).
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Application: point to plane distance in R3

• let point P with position vector r0=(xo,y0,z0) &
vector n=(a,b,c) define the equation of a plane

• choose a point Q with position vector r1=(x1,y1,z1)

• we want to calculate the distance D from Q to the
plane

• as shown D can be

found using a projection
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Point to plane distance in R3

• write the plane equation as ax+by+cz+d = 0

• calculate the required length D:
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Example: point to plane distance in R3

Find the distances: (a) from the point (1,-4,-3) to the plane with

equation 2x-3y+6z = -1 and (b) between this plane and the

plane with equation 4x-6y+12z = 13.
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Another geometric view of planes

• another way of viewing a vector equation of a
plane is n!r = n!r0 or...

• r!n = r0!n or...

• proj(r,n) = proj(r0,n) which makes sense
geometrically...

r0
r

n
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Orthogonal projection onto a subspace

• we know how to find the orthogonal projection
of a vector onto a line

• what about onto a general subspace? say a
plane...

v1 = proj(v,W)

v

n

v2 = v - proj(v,W)

• v is decomposed
into a sum of two
orthogonal vectors:

v = v1+ v2

• v1!W and v2!W&

• geometrically we
can see that the
decomposition is
unique
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Orthogonal projection onto a subspace

• in general let W is a subspace of an ips V

• then V can be decomposed as the direct
sum  V = W)W&

– this is an important result [see problem 7.28]

– for instance if A is a matrix transformation V*U the
decomposition is V = rowspace A ) nullspace A

• any vector v!V can be decomposed uniquely
as v = v1 + v2 with v1!W and v2!W&

• question: for a general subspace W how do we
calculate proj(v,W)?

• to answer this we need the concept of
orthogonal sets and bases....
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Orthogonal sets

• a set of non-zero vectors {u1, u2, ..., un} is an
orthogonal set if "ui,uj# = 0 for i$j

• if, in addition, "ui,ui# = 1 it is an orthonormal set
of vectors

• orthogonal sets are linearly independent
– an important result [see problem 7.15]

• examples:
– the standard basis vectors are an orthonormal basis

for Rn

– the vectors {1, cos t, cos 2t, ..., sin t, sin 2t, ...} are an
orthogonal set in C[-%,%]....used in Fourier analysis

– the basis {(1,2), (1,-1)} for R2 is not an orthogonal
basis
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Orthogonal bases

• let {u1, u1, ..., un} be an orthogonal basis for V

• express a vector v in terms of this basis:

v = a1u1 + a2u2 + ... + anun

• now calculate "v,ui# = "aiui,ui# = ai"ui,ui#

• so we can solve for the scalars

ai called Fourier coefficients of v

with respect to the {ui} basis

• then the decomposition of v is

• or
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Example: orthogonal bases

[problem 7.13] S={u1,u2,u3,u4} where u1=(1,1,0,-1), u2=(1,2,1,3),

u3=(1,1,-9,2), u4=(16,-13,1,3) is an orthogonal basis. Find the

coordinates of a general vector (a,b,c,d) with respect to S.
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....Example: orthogonal bases



Unit V - Inner product spaces 43

Orthogonal projection onto a subspace

• we can now answer the question asked on
slide 38...how do you calculate proj(v,W)?

• let {u1, u2,..., ur} be an orthogonal basis for W

• then we can define proj(v,W) by

• this o n l y works because the basis is
orthogonal
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Projection onto a subspace

• illlustrating for the plane...

v1 = proj(v,W)

v

u2

u1

proj(v,u2)

proj(v,u1)
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Example: projection onto a subspace

[problem 7.23a] Find the projection of v = (1,3,5,7) onto the

subspace W spanned by {u1,u2} where u1=(1,1,1,1), u2=(1,-3,4,-2).
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Orthonormal bases

• if                        is an orthonormal basis things
can be written more neatly....

• we get simply

• and
– which, of course, gives exactly the same formula

when written as projections

• the last question to ask is how to proceed if you
have a basis but it isn’t orthogonal?

• there is a simple procedure to make it
orthogonal....
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Gramm-Schmidt algorithm

• this procedure converts any old basis
{u1,u2,...,un} of V into an orthogonal basis

• define
w1= u1

w2= u2 - proj(u2,w1)

w3= u3 - proj(u3,w1) - proj(u3,w2)

.....and so on

• then {w1,w2,...,wn} is an orthogonal basis of V

• the vectors wi can easily be normalized to form
an orthonormal basis of V 
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Why Gramm-Schmidt works: geometrically

u3

w2

w1

proj(u3,w2)

proj(u3,w1)

w3
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Why Gramm-Schmidt works: algebraically

• let {u1,u2,...,ur} be an orthogonal set, v a vector

• use the coefficients on slide 40:

• define v+ = v - a1u1 - a2u2 - ... - arur

• then

• so v+ is orthogonal to ALL the ui vectors
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Example: Gramm-Schmidt algorithm

[example 7.10] Find an orthonormal basis for the subspace W of R4

spanned by {u1,u2,u3} where u1=(1,1,1,1), u2=(1,2,4,5) u3=(1,-3,-4,-2).
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....Example: Gramm-Schmidt algorithm

Unit V - Inner product spaces 52

Gramm-Schmidt in practice

• G-S is not a very robust numerical algorithm, but it’s
valuable for important theoretical reasons

– e.g. construction of the Legendre polynomials in the next
example

• you won’t usually have more than three basis vectors
because the calculations can be tedious

• to avoid messy arithmetic clear all fractions as you
make your choice for each wi vector

– any multiple of each wi will do the job just as well

• normalize all the wi vectors at the very last step once
you have the orthogonal basis

• the procedure works on any linearly independent set
– it gives an orthogonal basis for the subspace it spans
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Example: constructing Legendre polynomials

[example 7.11] P3(t) polynomial space with "f,g# defined on the interval

[-1,1]. Apply G-S to the mononomial basis to find an orthogonal basis.
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.... Example: constructing Legendre polynomials
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Example: projection onto a subspace

[problem 7.23b] Find the projection of v = (1,3,5,7) onto the

subspace W spanned by {u1,u2} where u1=(1,1,1,1), u2=(1,2,3,2).
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....Example: projection onto a subspace
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Example: orthogonal basis

[problem 7.12] Find an orthogonal basis for w& where w=(1,2,3,1).

...an alternative approach without using G-S.
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....Example: orthogonal basis
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Orthogonal matrices

• a real n(n matrix P is orthogonal if P-1 = PT

• this gives PTP = PPT = I

• if (and only if) we use the standard i.p. " , # on
Rn the following are equivalent

– P is orthogonal

– the rows of P are an orthonormal basis of Rn

– the columns of P are an orthonormal basis of Rn

• examples:
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Example: orthogonal matrices

[problem 7.32] Find an orthogonal matrix whose first row is

u1=(1/3,2/3,2/3).
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Orthogonal matrices

• a matrix P is a change of basis matrix between
two orthonormal bases if and only if it is
orthogonal [see problem 7.37]

• a more accurate [better] term for ‘orthogonal
matrix’ would be ‘orthonormal matrix’ but the
other is traditional

• an important application involves orthogonal
diagonalization of a matrix [or operator]

• when can we find an orthogonal P so that

PTAP is diagonal?
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Diagonalization of real symmetric matrices

• if A is a real symmetric matrix then:
– A has only real eigenvalues

– the eigenvectors of A corresponding to distinct
eigenvalues are orthogonal

• these results give a method to orthogonally
diagonalize any real symmetric matrix

1. find the eigenvalues and an eigenvector for each non-
repeated eigenvalue

2. for any repeated e.val. find an orthogonal basis of
eigenvectors for its eigenspace

3. normalize the whole set of eigenvectors

4. write the normalized eigenvectors as the columns of P
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Example: orthogonal diagonalization

[problem 9.25] Orthogonally diagonalize
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....Example: orthogonal diagonalization
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Quadratic forms

• a quadratic form in n real variables x1, ..., xn is an
expression of type q(x1, ...,xn) = % aijxixj

– e.g. 2x2 - 4y2 + 3xy + yz is a quadratic form in three
variables x,y,z

• we’ll write u = (x1, ..., xn) when needed so the
quadratic form is q(u)

– or sometimes just q(x,y,z)

• the terms of type aijxixj with i$j are called cross-
product terms

• a quadratic form can be represented using a
matrix product uTAu with a symmetric matrix A....

Unit V - Inner product spaces 66

Quadratic forms

•

• a quadratic form is diagonal if it is a sum of squares
– i.e. there are no cross-terms so....

– the matrix A is diagonal

• recall [slide 7] that an inner product "u,v# can be
written using column vectors as uTv

• so a quadratic form q(u) can also be associated with
the standard inner product in Rn

– q(u) = uTAu = uT(Au) = "u,Au# = "Au,u#

– A must be a real symmetric matrix
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Diagonalizing a quadratic form

• the quadratic form q(u) = uTAu can be orthogonally
diagonalized by a change of variables

– find a P which orthogonally diagonalizes A to D

– put u = Pv

– then uTAu = (Pv)TA(Pv) = vTPTAPv = vTDv
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Example: diagonalizing a quadratic form

[problem 9.26] Find an orthogonal substitution which diagonalizes

q(x,y) = x2 + 6xy - 7y2.
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...Example: quadratic form
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Transforming a conic to standard form

• a quadratic equation in R2 is an expression of the
form ax2 + 2bxy + cy2 + dx + ey + f = 0

– the associated quadratic form is q(x,y) = ax2 + 2bxy + cy2

– the cross-term represents a rotation away from standard
form...

– the principal axes are not the xy axes

– principal axes are given by the e.vecs of the A matrix

– the linear terms represent a translation away from the origin

• orthogonal diagonalization of the form provides a
change of variables that rotates the conic to
standard axes

– a translation (complete the square) can then put it into
standard position

• the same can be done for quadric surfaces in R3
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Positive definite matrix

• if A is a symmetric n(n matrix then

,1 ! uTAu ! ,n where
– ,1 is the largest e.val. of A

– ,n is the smallest e.val. of A

– u is constrained so ||u|| = 1 in the usual inner product of Rn

• uTAu = ,k if u is an e.vec. of A associated with ,k

• a symmetric matrix A is positive-definite if q(u) =
uTAu > 0 for all non-zero vectors u

• so.....a symmetric matrix is positive definite if and
only if all the e.vals. are positive

– there are other tests for positive definiteness

– the property is very important in both physical and
numerical applications
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A positive definite matrix has ...

• all positive entries on the main diagonal
– to show: apply vTAv with the standard basis vectors

• the largest entry (in abs val.) on the main diagonal

• det (A) > 0 so it is always invertible

• a unique square root matrix B so that B2 = A
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Diagonally dominant matrices

• A is diagonally dominant if:

|aii| > %|aij|, i $ j, i = 1, ... n

• a diagonally dominant matrix is positive definite if it
is:

– symmetric and ....

– has all main diagonal entries positive

• ...but the converse is false
– there are positive definite matrices that are not diagonally

dominant [find one]

– there are also positive definite matrices that are diagonally
dominant and not symmetric [any one with all positive
eigenvalues]
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Symmetric positive definite matrices

• symmetric positive definite matrices appear in
many applications:

– solution of partial differential equations ... heat conduction,
mass diffusion etc (Poisson and Laplace equations)

– analysis of stress

– linear regression models

– optimization problems
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Norms

• the axioms required to define a useful norm
(length) in a vector space V are (u,v!V, k scalar):

1. ||v|| ! 0 and ||v|| = 0 if an only if v = 0

2. ||kv|| = |k| ||v||

3. ||u + v|| " ||u|| + ||v||

• d(u,v) = ||u - v|| is then defined as the distance
between u and v

• you’ve seen how a norm can be associated with
an inner product by defining ||u||2 =  "u,u#

• but not all useful norms are obtained this way.....
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p-norms in Rn

• for u=(a1,...,an)!Rn [or Cn] we can define the

p-norm

• interesting special cases:

• the 2-norm is associated with the standard innner
product in Rn

• distance in Rn can be measured using any of
these p-norms

– distances and lengths of vectors will, of course, be
different for each p-norm
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Unit p-norm sets in R2

• consider R2 and define Sp to be all vectors of unit
p-length i.e. ||u||p = 1

S&
S2

S1

x

y


