Unit IV - Diagonalization

- diagonalizing matrices
- characteristic polynomial
- eigenvalues, eigenvectors and eigenspaces
- similarity of matrices or linear operators

Illustrative example

- find the matrix representation of the linear operator $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(3 x+y, x+3 y)$ with respect to the basis $\beta=\{(1,1),(1,-1)\}$
- first calculate the coordinates of any vector with respect to β : $(\mathrm{a}, \mathrm{b})=[(\mathrm{a}+\mathrm{b}) / 2,(\mathrm{a}-\mathrm{b}) / 2]_{\beta}$
- now apply this to the images of the basis vectors:

$$
\begin{aligned}
& \mathrm{T}(1,1)=(4,4)=[4,0]_{\beta} \\
& \mathrm{T}(1,-1)=(2,-2)=[0,2]_{\beta}
\end{aligned}
$$

- so the required matrix representation is a diagonal matrix....

$$
[T]_{\beta}=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

...Illustrative example

- an alternative approach to get the matrix...
- the change of basis matrix and its inverse are

$$
P=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \quad P^{-1}=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- then the required matrix representation is

$$
P^{-1} A P=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

- diagonal matrices have very convenient properties for calculations, so it's important if we can represent a linear operator this way

Diagonalization

- not all linear operators can be represented by diagonal matrices with respect to some basis
- a diagonalizable matrix A has some [invertible] P so that $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D}$ is diagonal
- equivalently a diagonalizable linear operator is one which can be represented by a diagonal matrix with respect to some basis
- our shopping list:
- which matrices can be diagonalized...
- how to find the appropriate basis....and
- how to calculate the diagonal matrix

Finding the right basis

- linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$
- $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ a basis of V
- the matrix representation $[T]_{\beta}$ is diagonal if and only if
$\left[T\left(u_{1}\right)\right]_{\beta}=\left[\lambda_{1}, 0,0, \ldots ., 0\right]_{\beta}$
$\left[T\left(u_{2}\right)\right]_{\beta}=\left[0, \lambda_{2}, 0, \ldots ., 0\right]_{\beta}$

$$
\left[T\left(u_{n}\right)\right]_{\beta}=\left[0,0, \ldots ., 0, \lambda_{n}\right]_{\beta}
$$

- conclusion.... a linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is diagonalizable if and only if there is a basis of V $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ so that $T\left(u_{i}\right)=\lambda_{i} u_{i}$

Eigenvectors and eigenvalues

- a vector $v \in V$ for which $T(v)=\lambda v$ is called an eigenvector of T with eigenvalue [scalar] λ
- so we've seen that
- $\quad \mathrm{T}$ is diagonalizable if and only if there is a basis of V consisting of eigenvectors of T and....
- the diagonal entries of the matrix representation with respect to that basis are simply the corresponding eigenvalues
- geometrically the transformation from v to $\mathrm{T}(\mathrm{v})$ leaves the direction of an eigenvector unchanged and its length magnified by λ

WARNING: this is not the same thing as a dilation or contraction map [why?]

Finding eigenvectors and eigenvalues

- we work with matrices now for simplicity
- for a linear operator T_{A} we can use say the matrix representation A with respect to the standard basis
- all these concepts and calculations are relevant to A
- A must be square in all of this of course
- an eigenvector v of A satisfies $A v=\lambda v$ for some λ
- equivalently we have the matrix equation

$$
[A-\lambda I] v=0
$$

- $\mathrm{v}=0$ is obviously a possible solution, but not very interesting
- the zero vector is technically an eigenvector of any matrix since $\mathrm{A} 0=\lambda 0$ for any λ
- what about non-zero solutions?

Finding eigenvectors and eigenvalues

- a non-zero solution of $[A-\lambda I] v=0$ exists if and only if the matrix $A-\lambda I$ is not invertible, i.e. $A-\lambda I$ must be a singular matrix
- otherwise we could invert $\mathrm{A}-\lambda \mathrm{l}$ and get the unique solution $v=[A-\lambda]]^{-1} 0=0$, i.e. only the zero solution
- equivalently we have non-zero eigenvectors if and only if the rank of $A-\lambda I<n$.....or
- equivalently we want $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$
- to find this you simply subtract λ from each diagonal entry of A and take the determinant

Finding eigenvectors and eigenvalues

- this equation $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$ is called the characteristic equation of the matrix A
- it's a polynomial of degree n if A is $n \times n$
- its solutions give all the eigenvalues λ
- the number of times a root λ_{i} is repeated $\left[\left(\lambda-\lambda_{i}\right)^{k}\right.$ is a repeated factor k times] is called the algebraic multiplicity of the eigenvalue λ_{i}
- once we know the $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots$. [solve for them] we take each one in turn and find the corresponding eigenvector(s) v by solving the linear system

$$
\left.\left[A-\lambda_{i}\right]\right] v=0
$$

Illustrative example repeated

- suppose we didn't know the values for the matrix in this illustrative example.... let's find the solution from scratch

Eigenspaces

- if v is an eigenvector then so is any multiple kv with the same eigenvalue:
$A(k v)=k(A v)=k(\lambda v)=\lambda(k v)$
- if v and w are eigenvectors for the same eigenvalue λ then so is $v+w$:

$$
A(v+w)=A v+A w=\lambda v+\lambda w=\lambda(v+w)
$$

- so for each eigenvalue λ the corresponding eigenvectors span a subspace E_{λ}, called the eigenspace of the eigenvalue λ
- the dimension of the eigenspace is called the geometric multiplicity of the eigenvalue λ
- a complete solution consists of finding a basis of eigenvectors for each eigenspace (eigenvalue)

Diagonalization

- what is the matrix P which diagonalizes a matrix A by providing $\mathrm{D}=\mathrm{P}^{-1} \mathrm{AP}$?
- $\quad P$ is the change of basis matrix between the standard basis and the special basis consisting of eigenvectors of A
- so P consists of columns which are the eigenvectors expressed in standard coordinates
- D is very useful for simplifying calculations of powers of A :
- A can be factorized as $A=P D P^{-1}$
- then $A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=P D^{2} P^{-1} \ldots$
$-\quad A^{n}=\left(P D P^{-1}\right) \ldots\left(P D P^{-1}\right)=P D^{n} P^{-1}$
- powers of a diagonal matrix are trivial to calculate
- these comments apply to calculation of polynomials of matrices too

Example: eigenvalues and eigenvectors

[problem 9.9] (a) Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}3 & -4 \\ 2 & -6\end{array}\right]$ (b) diagonalize A if possible (c) find A^{6}.

- only square matrices have eigenvalues
- $\quad \mathrm{an} \mathrm{n} \times \mathrm{n}$ matrix has at most n distinct eigenvalues [why?]
- eigenvectors corresponding to distinct eigenvalues are always linearly independent [see problem 9.21]
- the geometric multiplicity of an eigenvalue never exceeds its algebraic multiplicity
- if λ is an eigenvalue of an invertible matrix A then $1 / \lambda$ is an eigenvalue of A^{-1}

Example: degenerate eigenvalue
[problem 9.15] (a) Find the eigenvalues and eigenvectors of the
matrix $A=\left[\begin{array}{lll}3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2\end{array}\right] \quad$ (b) diagonalize A if possible.

