





Finding eigenvectors and eigenvalues

- we work with matrices now for simplicity
 - for a linear operator T_A we can use say the matrix representation A with respect to the standard basis
 - all these concepts and calculations are relevant to A
- A must be square in all of this of course
- an eigenvector v of A satisfies Av = λv for some λ
 - equivalently we have the matrix equation

$[A - \lambda I] v = 0$

- v = 0 is obviously a possible solution, but not very interesting
- the zero vector is technically an eigenvector of any matrix since A0 = $\lambda 0$ for any λ
- what about non-zero solutions?

Unit IV - Diagonalization

Finding eigenvectors and eigenvalues

- a non-zero solution of $[A \lambda I] v = 0$ exists if and only if the matrix A - λI is <u>not</u> invertible, i.e. A - λI must be a singular matrix
 - otherwise we could invert A λI and get the unique solution v = [A $\lambda I]^{-1}0$ = 0, i.e. only the zero solution
- equivalently we have non-zero eigenvectors if and only if the rank of A - λl < nor
- equivalently we want $det(A \lambda I) = 0$
- to find this you simply subtract λ from each diagonal entry of A and take the determinant

Unit IV - Diagonalization

8

Finding eigenvectors and eigenvalues	Illustrative example repeated
 this equation det(A - λl) = 0 is called the <i>characteristic equation</i> of the matrix A it's a polynomial of degree n if A is n×n its solutions give all the eigenvalues λ the number of times a root λ_i is repeated [(λ - λ_i)^k is a repeated factor k times] is called the <i>algebraic multiplicity</i> of the eigenvalue λ_i once we know the λ₁, λ₂, λ₃, [solve for them] we take each one <u>in turn</u> and find the corresponding eigenvector(s) v by solving the linear system [A - λ_il] v = 0 	suppose we didn't know the values for the matrix in this illustrative example let's find the solution from scratch
Unit IV - Diagonalization 9	Unit IV - Diagonalization 10

٦٢

7

 Eigenspaces if v is an eigenvector then so is any multiple kv with the same eigenvalue: A(kv) = k(Av) = k(λv) = λ(kv) if v and w are eigenvectors for the same eigenvalue λ then so is v+w: A(v+w) = Av+Aw = λv+λw = λ(v+w) so for each eigenvalue λ the corresponding 	 Diagonalization what is the matrix P which diagonalizes a matrix A by providing D = P⁻¹AP? P is the change of basis matrix between the standard basis and the special basis consisting of eigenvectors of A so P consists of columns which are the eigenvectors expressed in standard coordinates D is very useful for simplifying calculations of powers of A:
 eigenvectors span a subspace E_λ, called the eigenspace of the eigenvalue λ the dimension of the eigenspace is called the geometric multiplicity of the eigenvalue λ a complete solution consists of finding a basis of eigenvectors for each eigenspace (eigenvalue) 	 A can be factorized as A = PDP⁻¹ then A² = (PDP⁻¹)(PDP⁻¹) = PD(P⁻¹P)DP⁻¹ = PD²P⁻¹ Aⁿ = (PDP⁻¹)(PDP⁻¹) = PDⁿP⁻¹ powers of a diagonal matrix are trivial to calculate these comments apply to calculation of polynomials of matrices too





