Unit II - Matrix arithmetic

- matrix multiplication
- matrix inverses
- elementary matrices
- finding the inverse of a matrix
- determinants

Things we can already do with matrices

- equality $A=B$
- sum $A+B$
- additive identity the 0 matrix
- additive inverse -A
- scalar product cA
- transpose A^{\top}
- symmetric and skew-symmetric matrices
- links between matrix spaces and spanning sets, bases etc.
- these are matrix vector space concepts
- unlike for vector spaces we introduce a matrix product...the true motivation for this will not emerge until the next unit [linear mappings]

Defining the matrix product

- if \#columns of $\mathrm{A}=$ \#rows of B then we can define the matrix product $A B$
- if $A=\left(a_{i j}\right)$ is $m \times p$ and $B=\left(b_{i j}\right)$ is $p \times n \ldots$
- the product $A B$ is $m \times n$ and defined by

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i k} b_{k j}
$$

- the ijth entry of $A B$ is formed by multiplying together corresponding entries in row i of A and column j of B and adding the k products together
- in general $A B \neq B A$
- both products are only defined if both matrices are square
- even if both are square the product is not commutative [most examples you try probably will fail]

Things that fail in matrix arithmetic

- $A B \neq B A$ even if both are defined
- $A B=0$ does NOT imply either $A=0$ or $B=0$
- no cancellation rule: $A B=A C$ does NOT imply that $B=C$
- $\mathrm{A}^{2}=\mathrm{A}$ does NOT imply that $\mathrm{A}=1$
- in general there is no multiplicative inverse B for a matrix A, i.e. a B so that $A B=I$, even if A is square so that B may be possible

Example: $A B \neq B A \& A B=0$ with $A, B \neq 0$

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right] \\
A B=\left[\begin{array}{rrr}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
B A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
-11 & 6 & -1 \\
-22 & 12 & -2 \\
-11 & 6 & -1
\end{array}\right]
\end{gathered}
$$

Example: $\mathrm{AB}=\mathrm{AC}$ with $\mathrm{B} \neq \mathrm{C}$

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & -3 & 2 \\
2 & 1 & -3 \\
4 & -3 & -1
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
2 & 1 & 1 & 1 \\
1 & -2 & 1 & 2
\end{array}\right] \quad C=\left[\begin{array}{rrrr}
2 & 1 & -1 & -2 \\
3 & -2 & -1 & -1 \\
2 & -5 & -1 & 0
\end{array}\right] \\
& A B=\left[\begin{array}{rrr}
1 & -3 & 2 \\
2 & 1 & -3 \\
4 & -3 & -1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
2 & 1 & 1 & 1 \\
1 & -2 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrrr}
-3 & -3 & 0 & 1 \\
1 & 15 & 0 & -5 \\
-3 & 15 & 0 & -5
\end{array}\right] \\
& A C=\left[\begin{array}{rrr}
1 & -3 & 2 \\
2 & 1 & -3 \\
4 & -3 & -1
\end{array}\right]\left[\begin{array}{rrrr}
2 & 1 & -1 & -2 \\
3 & -2 & -1 & -1 \\
2 & -5 & -1 & 0
\end{array}\right]=\left[\begin{array}{rrrr}
-3 & -3 & 0 & 1 \\
1 & 15 & 0 & -5 \\
-3 & 15 & 0 & -5
\end{array}\right]
\end{aligned}
$$

Example: $A^{2}=A$ with $A \neq 1$

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right] \\
A^{2}=\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]=\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
\end{gathered}
$$

- a matrix for which $\mathrm{A}^{2}=\mathrm{A}$ is called idempotent

Powers and polynomials of square matrices

- for a square matrix A we define powers

$$
\begin{aligned}
& A^{2}=A A \\
& A^{3}=A^{2} A \\
& \ldots \\
& A^{n}=A^{n-1} A
\end{aligned}
$$

- how do we know that these are well-defined?
- ...because matrix multiplication is not totally pathological and satisfies the associative law:
$A(B C)=(A B) C$
[see text problem 2.10] provided the triple product is defined [right sizes of matrices]
- we can also calculate polynomials of matrices by combining powers and vector space operations....

Example: Polynomials of a matrix

- calculate $f(A)=2 A^{3}-4 A+5$ for the given A
$A=\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]$
$A^{2}=\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]=\left[\begin{array}{rr}9 & -4 \\ -8 & 17\end{array}\right]$
$A^{3}=A A^{2}=\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]\left[\begin{array}{rr}9 & -4 \\ -8 & 17\end{array}\right]=\left[\begin{array}{rr}-7 & 30 \\ 60 & -67\end{array}\right]$
$f(A)=2\left[\begin{array}{rr}-7 & 30 \\ 60 & -67\end{array}\right]-4\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]+5\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}-13 & 52 \\ 104 & -117\end{array}\right]$

Some useful properties

- matrix transpose
$\checkmark\left(\mathrm{A}^{\top}\right)^{\top}=\mathrm{A}$
$\checkmark(k A)^{\top}=k A^{\top}$
$\checkmark \quad A^{\top}+B^{\top}=(A+B)^{\top}$
$\checkmark(A B)^{\top}=B^{\top} A^{\top}$
- distributive laws
$-A(B+C)=A B+A C$
- $\quad(A+B) C=A C+B C$
- zero product: $0 \mathrm{~A}=0$ and $\mathrm{B} 0=0$
- associative law
- $(A B) C=A(B C)$ and special case...
- $k(A B)=(k A) B=A(k B) k$ a scalar

Identity matrix

- the (multiplicative) identity matrix is I, or I_{n} to emphasize the size

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- the identity is:
- two-sided for square matrices: $I \mathrm{~A}=\mathrm{A} I=\mathrm{A}$
- left and right for an $m \times n$ matrix: $\quad I_{m} B=B I_{n}=B$
- note that $(k I) A=k(I A)=k A$

Matrix inverse

- A is a square matrix
- a matrix A^{-1} so that $A A^{-1}=A^{-1} A=l$ is called an inverse for A
- not all square matrices have inverses
- those that do are called invertible or non-singular
- all of A, A^{-1}, and I are the same square size above
- if A is non-singular the inverse A^{-1} is unique
- say B and C are both inverses of A
- then $B=B I=B(A C)=(B A) C=I C=C$
- this works because the inverse is a 2 -sided inverse

Properties of matrix inverse

- A invertible if and only
- A^{-1} invertible \qquad $\left(A^{-1}\right)^{-1}=A$
- A^{n} invertible \qquad $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}$
- $k A$ invertible $(k A)^{-1}=(1 / k) A^{-1}$
- A^{\top} invertible $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
- if A, B invertible and the same size then
$-\quad A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
- a diagonal matrix D is invertible if and only if no diagonal entry is zero

$$
\left[\begin{array}{rrlr}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]^{-1}=\left[\begin{array}{rrlr}
1 / d_{1} & 0 & \cdots & 0 \\
0 & 1 / d_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 / d_{n}
\end{array}\right]
$$

1. System of equations

- the system of equations... $x-y+z=4$

$$
\begin{aligned}
3 x-2 y+2 w & =2 \\
-4 x+y+11 z & =-1 \\
-x+3 z-w & =-5
\end{aligned}
$$

- ...can be written as a matrix product, considering the column vector $u=[x y z w]^{\top}$ as a 4×1 matrix

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
3 & -2 & 0 & 2 \\
-4 & 1 & 11 & 0 \\
-1 & 0 & 3 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{r}
4 \\
2 \\
-1 \\
-5
\end{array}\right]
$$

- or simply $A u=b$
- $\quad \mathrm{A}$ is called the coefficient matrix of the system

Why define matrix product as we did?

- matrix multiplication isn't very intuitive in the raw
- the true motivation for our definition will be seen when we study linear mappings in the next unit
- a matrix can be used to represent a linear mapping
- the matrix product $A B$ is then the result of doing two of these mappings in succession
- we'll learn how to do calculations with the matrix product before drawing this linear mapping connection
- two simple illustrations of matrix product:

1. writing systems of equations
2. representing the effect of an elementary row operation by a matrix product

System of equations

- a linear system $A u=b$ is an equation involving matrix products
- if the coefficient matrix A is invertible and we know A^{-1} we can use it to calculate THE solution vector u :

$$
\mathrm{A}^{-1} \mathrm{~A} u=/ \mathrm{u}=\mathrm{u}=\mathrm{A}^{-1} \mathrm{~b}
$$

- this method fails if A is
- not a square matrix [e.g. the system below] or
- square, but non-invertible [e.g. the A in the previous slide]

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
3 & -2 & 0 & 2 \\
-4 & 1 & 11 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{r}
4 \\
2 \\
-1
\end{array}\right]
$$

2. Elementary row operations

- we can represent the effect of an elementary row operation on a matrix A by a matrix product EA
- $\quad \mathrm{E}$ is called an elementary matrix
- multiplying A on the left by E produces a new matrix EA with the row operation applied to A
- apply a chain of row operations to both sides of a system of equations $A x=b$:
$E_{1} A=E_{1} b \rightarrow E_{2} E_{1} A=E_{2} E_{1} b \rightarrow E_{3} E_{2} E_{1} A=E_{3} E_{2} E_{1} b \ldots$.
- the elimination method is based on:
- applying the same operations to the b vector and
- obtaining a product on the left hand side in echelon form
- note that the matrices multiply in the reverse order of doing the operations [inside out]

Three types of elementary matrices
multiply row 2 by c:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{rr}
a_{11} & a_{12} \\
c a_{21} & c a_{22}
\end{array}\right]
$$

interchange rows 2\&3:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

add row 3 to row 1:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}+a_{31} & a_{12}+a_{32} & a_{13}+a_{33} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Elementary matrices

- an elementary matrix E can be obtained by applying the required row transformation to the identity matrix I
- elementary matrices are invertible

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right]^{-1}=\left[\begin{array}{rr}
1 & 0 \\
0 & 1 / c
\end{array}\right]
$$

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

- so a product of elementary matrices is invertiblea sequence of row operations can be undone

Row canonical form of a matrix

- a matrix A is in row-canonical form if
- it is in echelon form
- each pivot entry is 1
- all entries above a pivot entry are zero
- this is a more-specialized form of echelon matrix
- any matrix is row equivalent to a unique matrix in row-canonical form

Combining three concepts

- for an $n \times n$ matrix A the following are equivalent:
- A is invertible
- A is a product of elementary matrices
- the row canonical matrix of A is I_{n}
- you should study the proof of this result in the text problem 3.35
- this provides a convenient method of calculating the inverse of a matrix....

Finding matrix inverses

- suppose $A=E_{1} E_{2} \ldots E_{k}$
- write $E_{1}{ }^{-1} E_{1}=/$ then....
- $\mathrm{E}_{2}^{-1}\left(\mathrm{E}_{1}^{-1} \mathrm{E}_{1}\right) \mathrm{E}_{2}=/$ and so on, until....
- $\mathrm{E}_{\mathrm{k}}{ }^{-1}\left(\mathrm{E}_{\mathrm{k}-1}{ }^{-1} \ldots . .\left(\mathrm{E}_{2}^{-1}\left(\mathrm{E}_{1}{ }^{-1} \mathrm{E}_{1}\right) \mathrm{E}_{2}\right) \ldots \mathrm{E}_{\mathrm{k}-1}\right) \mathrm{E}_{\mathrm{k}}=1$
- re-arrange as $\left[E_{k}{ }^{-1} E_{k-1} 1^{-1} \ldots E_{2}{ }^{-1} E_{1}{ }^{-1}\right]\left[E_{1} E_{2} \ldots . E_{k-1} E_{k}\right]=I$
- or $\left[\mathrm{E}_{\mathrm{k}}{ }^{-1} \mathrm{E}_{\mathrm{k}-1}{ }^{-1} \ldots . \mathrm{E}_{2}{ }^{-1} \mathrm{E}_{1}{ }^{-1}\right][\mathrm{A}]=$ I
- so $A^{-1}=E_{k}^{-1} E_{k-1}{ }^{-1} \ldots . E_{2}^{-1} E_{1}^{-1}$
- since A^{-1} is unique this product is the required inverse matrix of A

A convenient practical method

- arrange A and $/$ side by side: [$\mathrm{A}, ~ I]$
- reduce A to $/$ and apply the same row reduction steps to / simultaneously
- the result is $\left[I, \mathrm{~A}^{-1}\right]$

Example: Text 3.32 (a)

Find the inverses [if possible] of the following matrices:
$A=\left[\begin{array}{rrr}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3\end{array}\right]$

...Example: Text 3.32 (b)

$B=\left[\begin{array}{rrr}1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6\end{array}\right]$

Determinants

- we define a useful concept for a SQUARE matrix A of any size: the determinant of A is a real number
- first $\operatorname{det}[\mathrm{a}]=\mathrm{a}$
- next: $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
- then: $\operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=a_{11}\left[a_{22} a_{33}-a_{23} a_{32}\right]-a_{12}\left[a_{21} a_{33}-a_{23} a_{31}\right]+a_{13}\left[a_{21} a_{32}-a_{22} a_{31}\right]$
26

Examples: determinants

$$
\begin{aligned}
\left|\begin{array}{rr}
3 & 1 \\
4 & -2
\end{array}\right| & =3(-2)-1(4)=-10 \\
\left|\begin{array}{rrr}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & -8 & 9
\end{array}\right| & =1\left|\begin{array}{rr}
5 & 6 \\
-8 & 9
\end{array}\right|-2\left|\begin{array}{rr}
-4 & 6 \\
7 & 9
\end{array}\right|+3\left|\begin{array}{rr}
-4 & 5 \\
7 & -8
\end{array}\right| \\
& =1(45-(-48))-2(-36-42)+3(32-35)=240 \\
\left|\begin{array}{rrr}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & -8 & 9
\end{array}\right| & =-2\left|\begin{array}{rr}
-4 & 6 \\
7 & 9
\end{array}\right|+5\left|\begin{array}{rr}
1 & 3 \\
7 & 9
\end{array}\right|-(-8)\left|\begin{array}{rr}
1 & 3 \\
-4 & 6
\end{array}\right| \\
& =-2(-36-42)+5(9-21)+8(6-(-12))=240
\end{aligned}
$$

Easy trick for 3×3 determinants

- a 3×3 det consists of:
- six products with one entry from each row
- signed with ± 1 according to 'direction'
$\left|\begin{array}{rrr}1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9\end{array}\right|=1(5)(9)+2(6)(7)+3(-4)(-8) \quad$ left \rightarrow right

$$
-1(6)(-8)-2(-4)(9)-3(5)(7) \quad \text { right } \rightarrow \text { left }
$$

- warning.... this method only works for 3×3 determinants!

Alternative expansions

- you can expand a determinant along any row or column, e.g. the previous example:

$$
\begin{aligned}
\left|\begin{array}{rrr}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & -8 & 9
\end{array}\right| & =-2\left|\begin{array}{rr}
-4 & 6 \\
7 & 9
\end{array}\right|+5\left|\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right|-(-8)\left|\begin{array}{rr}
1 & 3 \\
-4 & 6
\end{array}\right| \\
& =-2(-36-42)+5(9-21)+8(6-(-12))=240
\end{aligned}
$$

- include the appropriate sign (-1$)^{\text {itj }}$ [see cofactors]
- so choose the way that gives the easiest arithmetic, especially when there are zero entries
- a simple trick also works for 3×3 determinants...

Some useful stuff about determinants

- if A is an $n \times n$ (square) matrix
$>\operatorname{det}(\mathrm{A})=\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)$
$>\operatorname{det} \mathrm{A}=0$ if A has a row or column of zeros
$>$ if A is triangular $\operatorname{det}(A)=a_{11} a_{22} \ldots . . a_{n n}$
$\Rightarrow \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
$>\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$
$>\operatorname{det}(\mathrm{kA})=\mathrm{k}^{\mathrm{n}} \operatorname{det}(\mathrm{A})$
$>\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$ in general

Using row ops to evaluate determinants

- if E is an elementary matrix
$>\operatorname{det}(\mathrm{E})=\mathrm{c}$ if E multiplies a row by c
$>\operatorname{det}(E)=-1$ if E interchanges two rows
$>\operatorname{det}(E)=1$ if E adds a multiple of one row to another
- so elementary row ops change a determinant in general
- so do elementary column ops
- but all these changes are predictable and can be kept track of...

Using row ops to evaluate determinants

- direct evaluation of a determinant is usually not feasible except for small matrices, so...
- apply row or column operations to a determinant to obtain a row or column with a single non-zero entry
- then expand the determinant about that entry
- obtain a determinant of size one less
- AVOID POTENTIAL STUDENT ERRORS:
- multiplying a row by k multiplies the det by k
- interchanging two rows changes the sign of the det
- when you add a multiple of a row to another be sure to put it in the proper place, or else you have changed the det

Examples: using row ops for determinants

$$
\begin{aligned}
\left|\begin{array}{rrr}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & -8 & 9
\end{array}\right| & =\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & 13 & 18 \\
0 & -22 & -12
\end{array}\right|=-2\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & 13 & 18 \\
0 & 11 & 6
\end{array}\right| \\
& =(-2)\left|\begin{array}{rr}
13 & 18 \\
11 & 6
\end{array}\right|(-2)(78-198)=240
\end{aligned}
$$

- the amount of work involved for a 3×3 determinant is about the same as for a direct evaluation
- for a 4×4 determinant or bigger the ONLY sensible approach is to simplify with row or column ops...

Example: Text 8.4(a)

$\left|\begin{array}{rrrr}2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -6 & 4 & 3\end{array}\right|$

Example: Text 8.4(b)

$\left|\begin{array}{rrrrr}6 & 2 & 1 & 0 & 5 \\ 2 & 1 & 1 & -2 & 1 \\ 1 & 1 & 2 & -2 & 3 \\ 3 & 0 & 2 & 3 & -1 \\ -1 & -1 & -3 & 4 & 2\end{array}\right|$

Minors and cofactors

- let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a $\mathrm{n} \times \mathrm{n}$ matrix
- the sub-determinant $\left|\mathrm{M}_{\mathrm{ij}}\right|$ obtained by deleting row i and column j from $|A|$ is called the minor of $a_{i j}$
- the signed minor $\mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i}+j}\left|\mathrm{M}_{\mathrm{ij}}\right|$ is called the cofactor of a_{ij}
- the transpose of the $(n \times n)$ matrix of cofactors of A is called the (classical) adjoint of A:

$$
\operatorname{adj}(A)=\left[A_{i j}\right]^{\top}
$$

- this provides a [not very useful but famous] formula for the inverse matrix:

$$
\mathrm{A}^{-1}=(1 / \operatorname{det} \mathrm{A}) \operatorname{adj}(\mathrm{A})
$$

- the method is mainly of theoretical interest

Example: Text 8.6
Find the inverse of
$\left[\begin{array}{lll}1 & 3 & 3 \\ 2 & 3 & 4 \\ 5 & 8 & 9\end{array}\right]$

Applications of determinants?

- brute force numerical calculation is problematic
- sore wrist syndrome (by hand)
- roundoff error and overflow (machine)
- so...always use row operations to evaluate determinants bigger than 3×3
- determinants are mainly useful to mathematicians for theoretical work
- there are some routine day-to-day applications in engineering math, e.g.
- calculating the cross product of vectors in R^{3}
- I have minimized the topic because determinants really have few genuine engineering applications
- however you do need to know the basics as given

Incidence matrices

- consider a system with discrete components that interact at a finite number of well-defined points

\rightarrow -

Incidence matrices

- we can define the incidence matrix of this system to represent these interactions

$$
\left[\begin{array}{l|llllll}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline A & 1 & 1 & 1 & 0 & 0 & 0 \\
B & 0 & 0 & 1 & 1 & 1 & 0 \\
C & 1 & 1 & 0 & 0 & 1 & 1 \\
D & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- rows are components, columns are interactions
- entries are $\{0,1\}$
- each column has exactly two non-zero entries
- these are coordinates of vectors in the binary vector space defined on the set of interactions $\{1,2,3,4,5,6\}$

Incidence matrices

- the vectors represent sets of interactions which can be deleted to isolate each component
- we can reduce the matrix to..

and get a linearly independent set: $\{123,356,46\}$
- the others can be expressed in terms of these three:
- $1256=123+356$
- $12346=123+46$
- $345=356+46$
- $1245=123+356+46$

Connecting various concepts

- for an $n \times n$ matrix A all these conditions are equivalent :
$>A$ is invertible
$\Rightarrow \operatorname{det}(\mathrm{A}) \neq 0$
$>\operatorname{rank} \mathrm{A}=\mathrm{n}$
$>$ the rows of A are a basis for the row space
> the columns of A are a basis for the column space
$>$ the linear system $A x=b$ has a unique solution for any $b: x=A^{-1} b$
$>$ the echelon form for A has no zero row
$>$ the row canonical form for A is I_{n}
$\Rightarrow \mathrm{A}$ is a product of elementary matrices

