 Unit II - Matrix arithmetic matrix multiplication matrix inverses elementary matrices finding the inverse of a matrix determinants 	 Things we can already do with matrices equality A = B sum A + B additive identity the 0 matrix additive inverse -A scalar product cA transpose A^T symmetric and skew-symmetric matrices links between matrix spaces and spanning sets, bases etc. these are matrix vector space concepts unlike for vector spaces we introduce a matrix productthe true motivation for this will not emerge until the next unit [linear mappings]
Unit II - Matrix anumene	i Unit il • Matrix anumeuc 2

 Using row ops to evaluate determinants if E is an elementary matrix det (E) = c if E multiplies a row by c det (E) = -1 if E interchanges two rows det (E) = 1 if E adds a multiple of one row to another so elementary row ops change a determinant in general so do elementary column ops but all these changes are predictable and can be kept track of 	 Using row ops to evaluate determinants direct evaluation of a determinant is usually not feasible except for small matrices, so apply row or column operations to a determinant to obtain a row or column with a single non-zero entry then expand the determinant about that entry obtain a determinant of size one less AVOID POTENTIAL STUDENT ERRORS: multiplying a row by k multiplies the det by k interchanging two rows changes the sign of the det when you add a multiple of a row to another <u>be sure</u> to put it in the proper place, or else you have changed the det
Unit II - Matrix arithmetic 31	Unit II - Matrix arithmetic 32

Example: Text 8.4(b)	Minors and cofactors
$ \begin{vmatrix} 6 & 2 & 1 & 0 & 5 \\ 2 & 1 & 1 & -2 & 1 \\ 1 & 1 & 2 & -2 & 3 \\ 3 & 0 & 2 & 3 & -1 \\ -1 & -1 & -3 & 4 & 2 \end{vmatrix} $	 let A = (a_{ij}) be a n×n matrix the sub-determinant M_{ij} obtained by deleting row i and column j from A is called the <i>minor</i> of a_{ij} the signed minor A_{ij} = (-1)ⁱ⁺ⁱ M_{ij} is called the <i>cofactor</i> of a_{ij} the transpose of the (n×n) matrix of cofactors of A is called the (classical) <i>adjoint</i> of A: adj (A) = [A_{ij}]^T this provides a [not very useful but famous] formula for the inverse matrix: A⁻¹ = (1/det A) adj (A) the method is mainly of theoretical interest
Unit II - Matrix arithmetic 35	Unit II - Matrix arithmetic 36

