

Vector addition axioms	Scalar multiplication axioms
 For any u,v ∈ V the vector sum u+v is defined and satisfies for all u,v,w ∈ V: 1. u+v ∈ V [closure] 2. u+v = v+u [commutative] 3. u+(v+w) = (u+v)+w [associative] 4. there is an additive identity 0 ∈ V so that u+0 = u [zero vector] 5. there is a vector -u ∈ V so that u+(-u) = 0 [additive inverse] 	 For any u ∈ V and k ∈ F the scalar multiple ku is defined and satisfies for all u,v ∈ V and k,l ∈ F : 6. ku ∈ V [closure] 7. k(u+v) = ku+kv [vector sum distributive] 8. (k+l)u = ku+lu [scalar sum distributive] 9. k(lu) = (kl)u [scalar multiplication associative] 10. 1u = u [an odd one but necessary to connect the two operations]
Unit I - Vector spaces 5	Unit I - Vector spaces 6

- Fⁿ = the set of all n-tuples of elements in F
- real space Rⁿ, complex space Cⁿ
- vector space operations are defined as usual coordinate-wise:
 - $(a_1,a_2,...,a_n) + (b_1,b_2,...,b_n) = (a_1+b_1, a_2+b_2,..., a_n+b_n)$ $k(a_1,a_2,...,a_n) = (ka_1,ka_2,...,ka_n)$
- the zero vector is (0,0,...,0)
- the additive inverse -(a₁,a₂,...,a_n) = (-a₁,-a₂,...,-a_n)
- notation conventions sometimes convenient
- $u = (u_1, u_2, ..., u_n)$ etc
- lists of u vectors can be written with superscripts $u^1,\,u^2$ etc if necessary

Unit I - Vector spaces

Example: Polynomial spaces

- general polynomial space is P(t) = the set of all polynomials p(t) = a₀+ a₁t + a₂t² + ... a_kt^k with coefficients a_i ∈ F, any degree k
- vector space operations:
 - p(t) + q(t) is the polynomial defined by adding all the terms in both p(t) and q(t)
 - kp(t) is the polynomial defined by multplying each term of p(t) by k
- zero vector is the polynomial with no terms at all
- the additive inverse of p(t) is the polynomial with all the terms of p(t) given opposite sign

Unit I - Vector spaces

10

Non-examples: NOT a vector space V = {(a,b)∈R ² so that} i. (a,b) + (c,d) = (a+c,b+d) & k(a,b) = (ka,b) [0(a,b) = (0,b) ≠ 0 in general] ii. (a,b) + (c,d) = (a,b) & k(a,b) = (ka,kb) [(a,b)+(c,d) = (a,b) ≠ (c,d) = (c,d)+ (a,b) in general] iii. (a,b) + (c,d) = (a+c,b+d) & k(a,b) = (k ² a,k ² b) [(r+s)(a,b) = ((r+s) ² a,(r+s) ² b) ≠ (r ² a, r ² b) + (s ² a, s ² b) = r(a,b)+s(a,b) in general] iv. (a,b)+(c,d) = (a+c,b+d) & k(a,b) = (ka,0) [ALL axioms ok EXCEPT the weird one #10:		-	multiples] all the other axioms are automatic by virtue of being inherited from V
1(a,b) = (1a,0) = (a,0) ≠ (a,b) in general]		•	 {0} and V are ss of any vs V I use 'ss' for subspace and 'vs' for vector space
Unit I - Vector spaces 1	7		Unit I - Vector spaces 18

 Complex Euclidean space Cⁿ the set of n-tuples with complex entries is a vector space Cⁿ over R Cⁿ is also a vs over C what's the difference? Rⁿ is a subspace of Cⁿ considered to be a vs over R, but Rⁿ is NOT a subspace of Cⁿ over C, because ku can have complex entries with k ∈ C & u ∈ Rⁿ, so ku would not be in Rⁿ in general 	 Example: subspaces of the binary vs let V be the binary vector space defined on the collection of subsets of the set {1,2,3,4} let W = {Ø,123, 124, 34}, where 123 is a short notation meaning the set {1,2,3} etc. is W a ss of V? it's trivially closed under scalar multiples check that W is closed under vector sums: 123 + 124 = 34 ∈ W 123 + 34 = 124 ∈ W 124 + 34 = 123 ∈ W 123 + 124 + 34 = Ø ∈ W
Unit I - Vector spaces 29	Unit I - Vector spaces 30

 We need some more general vs concepts sameness, dimension, linear independence & basis now the other question: if all n-dimensional vs are really the 'same' why do we develop all the different examples? the answer is central to the problem-solving utility of linear algebra in applications: because the powerful methods familiar from R³ can be applied to study and analyse problems involving a wide variety of different entities (i.e. different types of vectors) 	 Linear combinations V is a vs over F choose some vectors { u₁, u₂,u_r } for any scalars k₁, k₂,,k_r we can evaluate w = k₁u₁ + k₂u₂ + + k_ru_r and it's guaranteed to be a vector in V too (why?) w is called a <i>linear combination</i> (lc) of u₁, u₂,, u_r
Unit I - Vector spaces 35	Unit I - Vector spaces 36

Examples: linear combinations	REMEDIAL DIGRESSION: solving systems
 in R⁴ the vector (-1,1, 6,11) is a lc of the vectors (1,2,0,4) & (1,1,-2,-1) 	You should be able to solve the system: x + 2y = 1 -2x - 3y + z = 4 5x + 3z = -3
• in P ₃ (t) the polynomial p(t) = 6 + 3t ² - 4t ³ is a lc of the polynomials p ₀ (t) = 1, p ₁ (t) = t, p ₂ (t) = t ² , p ₃ (t) = t ³	
Unit I - Vector spaces 37	Unit I - Vector spaces 38

Example: linear combinations Express the vector $t^2+4t-3 \in P_2$ as a lc of the vectors: $\{t^2-2t+5, 2t^2-3t, t+3\}$ [two solution approaches]	 Linear span given a set of vectors {u₁, u₂,u_r} in a vs V we can form the set W of all vectors which are lc's of these u_i vectors W = {w∈V : w = k₁u₁ + k₂u₂ + k_ru_r} k_i any scalars W is called the <i>(linear) span</i> of the set of vectors S = {u₁, u₂,u_r}, or W is the (vector) space <i>spanned by</i> S S is called a <i>spanning set</i> for W we write W = Sp{u₁, u₂,u_r} or W = Sp(S)
Unit I - Vector spaces 39	Unit I - Vector spaces 40

 Linear span Sp(S) is the smallest subspace of V containing the vectors u₁, u₂,u_r it's definitely a subspace because it's a subset and closed to all vector sums and scalar products of the u₁, u₂,u_r as well any ss W of V containing the S vectors must also contain all lc of them, i.e. Sp(S) ⊂ W in fact the two closure checks for a ss are equivalent to being closed under linear combinations of its vectors 	Example: Linear span Show that Sp{(1,1,1),(1,2,3),(1,5,8)} = R ³ [4.13 text] - to show this requires that any vector (a,b,c) \in R ³ can be written as a lc of these three vectors: (a,b,c) = x(1,1,1) + y(1,2,3) + z(1,5,8) - we have a system of equations x+y+z = a which x+y+z = a x+2y+5z = b reduces to y+4z = b-a x+3y+8z = c z = -c+2b-a - the (unique) solution for the lc is x = -a+5b-3c, y = 3a-7b+4c, z = -a+2b-c - for example (1,6,-2) = 35(1,1,1) - 47(1,2,3) + 13(1,5,8) (0,-1,-2) = 1(1,1,1) - 1(1,2,3) + 0(1,5,8) etc HII1 - Vector space 42

Simple examples: Linear independence

- {0} is always linearly dependent [why?]
- any set which includes the zero vector is linearly dependent
- any set {v} with <u>one</u> single vector v ≠ 0 is linearly independent [why?]
- a set of two non-zero vectors {u,v} is linearly dependent if and only if u = kv, i.e. one is a scalar multiple of the other
- with e_i = (0,...,0,1,0,....,0), i.e. zero everywhere except for a 1 in the ith position, the set {e₁, e₂, ..., e_n} is linearly independent in Rⁿ

Unit I - Vector spaces

Simple examples: Linear independence

- the set {1, t, t²,, tⁿ} is linearly independent in P_n
- in C(-∞,∞) the set {1, x, cos x} is linearly independent
- in C(-∞,∞) the set {1, x, cos²x, sin²x} is linearly dependent
 - because 1 $\cos^2 x$ $\sin^2 x = 0$ (identically zero) is a nonzero Ic of the vectors that adds to the zero function
- in the binary vs on {1,2,3,4} the set {123,124, 34} is linearly dependent
 - $123 + 124 + 34 = \emptyset$ is a non-zero lc of vectors giving the zero vector

Unit I - Vector spaces

46

- the columns of A can be considered as vectors C₁, $C_2, \ldots, C_n \in \mathbb{R}^m$
- the subspace of R^m spanned by the columns of A is called the column space of A

Unit I - Vector spaces

B is said to be row equivalent to A

Unit I - Vector spaces

we write B ~ A

52

Row equivalent matrices Using row operations to check linear dependence elementary row operations can be viewed as this result should be considered along with the operations on vectors in Rⁿ (rows of A): technique described on slides 49&50 interchange vectors R_i and R_i we can check linear independence by - multiply a vector R_i by a scalar k - arranging the vectors as the rows of a matrix replace a vector R_i by the sum R_i + R_i performing row operations until the matrix is in echelon form ..., R_n} spanned by the rows if there are less rows than the number of vectors - the order of the spanning vectors is irrelevant then the original vectors are linearly dependent vectors are replaced by linear combinations with other two questions: vectors no vectors are eliminated what is echelon form? row equivalent matrices have identical row why did we use columns before [slide 49]? spaces Unit I - Vector spaces 53 Unit I - Vector spaces 54

 Echelon matrix we'll defer the answer to the second question the leading non-zero entry in a row is called the <i>pivot entry</i> of the row an <i>echelon matrix</i> is in the following form: all zero rows are at the bottom of the matrix the pivot entry in a row is in a column to the right of the pivot entry in the preceding row the rows of an echelon matrix are linearly independent [why?] 	 Basis of a vector space let V = Sp{u₁, u₂,,u_r} if w is any vector in V then {w, u₁, u₂,u_r} is certainly linearly dependent the spanning set itself {u₁, u₂,u_r} may or may not be linearly dependent, but if it's linearly dependent choose a u_i which is a lc of the other r-1 vectors [slide 47] then V is also spanned by just those r-1 vectors {u₁,, u_{i-1}, u_{i+1},,u_r} continuing to 'cast out' dependent vectors, we eventually arrive at a linearly independent set that still spans V this is called a <i>basis</i> of V (the plural is <i>bases</i>)
Unit I - Vector spaces 55	Unit I - Vector spaces 56
Basis of a vector space • a spanning set {u ₁ , u ₂ , u ₃ , u ₂ } for a vs V is a <i>basis</i> if:	Examples: standard bases

- a spanning set {u₁, u₂, u₃, ..., u_n} for a vs V is a *basis* if:
 it is linearly independent OR equivalently
 - it is linearly independent, OR equivalently
 - the expression of any vector in terms of basis vectors is unique: $u = a_1u_1 + a_2u_2 + ... + a_nu_n$
- all bases {u₁, ..., u_n} for V have the same number of vectors n
 - <u>not</u> obvious see proof 4.36 text
 - n is called the *dimension* of V
 - V is n-dimensional
 - write dim V = n
- some vector spaces may be infinite dimensional (e.g. function spaces, polynomial space P)
- think of a basis as a <u>maximal linearly independent set</u>

Unit I - Vector spaces

- the standard basis in R^n is the set of vectors $\{e_1,e_2,...,e_n\}$ defined on slide 45
 - Rⁿ is n-dimensional
 - in R^3 these are written i = (1,0,0), j = (0,1,0), k = (0,0,1)
 - in P_n the mononomial basis is {1, t, t², t³,..., tⁿ} - dim(P_n) = n+1
- the standard basis for the space of m×n matrices M_{m,n} consists of the set of matrices {E_{ij}} in which the ijth entry is 1 and all other entries are zero
 - dim(M_{m,n}) = mn
- the binary vs on the set {1,2,...,n} has a basis {{1},{2},...{n}} - this vs is n-dimensional

Unit I - Vector spaces

58

Some useful results about vs bases Example: basis of a vector space if V is an n-dimensional vs then ...show the set of vectors $S = \{(1,1,1), (1,2,3), (2,-1,1)\}$ is a basis for R³ - any n+1 vectors in V must be linearly dependent three vectors in R³ are a basis if and only if they are any set of n linearly independent vectors is a basis of V linearly independent any spanning set with n vectors is a basis of V write as rows of a matrix and reduce to echelon form: examples $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ 1 1 1 1 1 any four vectors in R³ must be dependent the vectors {1,1,1),(1,2,3),(2,-1,1)} are linearly independent [check as per method on slide 54] so they are a basis of R³..... three independent rows in the echelon matrix so the vectors are independent S is a basis for R³ Unit I - Vector spaces 59 Unit I - Vector spaces 60

 Example: bases and subspaces to extend this to a basis for R⁴ requires four linearly independent vectors including the two found above the simplest way to do this is to write an echelon matrix ¹ -2 5 -3 0 7 -9 2 0 0 1 0 0 0 0 1 ¹ the row vectors in this are linearly independent (as are the rows of ANY echelon matrix) the required basis (obviously not unique) for R⁴ is therefore {(1,-2,5,-3),(0,7,-9,2),(0,0,1,0),(0,0,0,1)} 	 Coordinates let V be a finite dimensional vs over F choose an <u>ordered</u> basis B = {u₁,,u_n} let u ∈ V be expressed as u = a₁u₁ + + a_nu_n in terms of the selected basis the scalars a₁,a₂,,a_n are called the <i>coordinates</i> of u <i>with respect to the basis</i> B this defines an n-tuple [u]_B = [a₁,a₂,,a_n] ∈Fⁿ called the <i>coordinate vector</i> of u with respect to B choose a different basis B' = {v₁,,v_n} and express u in terms of B': u = b₁v₁ + + b_nv_n the vector u is still the same but its coordinate vector
Unit I - Vector spaces 65	$[u]_{B'} = [b_1, b_2,, b_n] \text{ is now different}$ Unit I - Vector spaces 66

Example: coordinates in polynomial space • find a basis for W = Sp{v ₁ , v ₂ , v ₃ , v ₄ } < P ₃ where $v_1 = t^3 - 2t^2 + 4t + 1$ $v_2 = 2t^3 - 3t^2 + 9t + 1$ $v_3 = t^3 + 6t - 5$ $v_4 = 2t^3 - 5t^2 + 7t + 5$ • the coordinates of these polynomials with respect to the monomial basis {t ³ , t ² , t, 1} are $[v_1] = (1, -2, 4, 1)$ $[v_2] = (2, -3, 9, 1)$ $[v_3] = (1, 0, 6, -5)$ $[v_4] = (2, -5, 7, 5) \dots$	$\begin{array}{c} \dots \text{Example: coordinates} \\ \bullet \text{we can check the original polynomials by checking the coordinate vectors in R^4} \\ \bullet \text{write them as rows of a matrix and reduce to echelon form} \\ \left[\begin{array}{cccc} 1 & -2 & 4 & 1 \\ 2 & -3 & 9 & -1 \\ 1 & 0 & 6 & -5 \\ 2 & -5 & 7 & 5 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & -2 & 4 & 1 \\ 0 & 1 & 1 & -3 \\ 0 & 2 & 2 & -6 \\ 0 & -1 & -1 & 3 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & -2 & 4 & 1 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \\ \bullet \text{the non-zero rows in the echelon matrix form a basis for the row space, i.e. the space of coordinate vectors, so} \\ \bullet \dots \text{the corresponding vectors } \{t^3-2t^2+4t+1, t^2+t-3\} \text{ are a basis for W and dim(W) = 2} \end{array}$
Unit I - Vector spaces 69	Unit I - Vector spaces 70

 Isomorphism there is a one:one correspondence between vectors in an n-dimensional vs V over F and vectors in Fⁿ associate a vector v with its coordinates [v]_B with respect to some basis B = {u₁,,u_n} of V this correspondence also preserves the vs operations let v = a₁u₁ + + a_nu_n and w = b₁u₁ + + b_nu_n [V] + [W] = [a₁,, a_n] + [b₁,, b_n] = [a₁+b₁,, a_n+b_n] = [v+w] k[v] = k[a₁,, a_n] = [ka₁,, ka_n] = [kv] V and Fⁿ are called <i>isomorphic</i>, i.e. 'the same' we write V ≅ Fⁿ we can solve problems in other vs's by using vectors in Rⁿ for the calculations [e.g. the previous example] 	 Basis finding: row space algorithm to find a basis for the space W spanned by a given set of vectors we can: write them as the rows of a matrix R W is the row space of R row reduce the matrix R to echelon form select the non-zero rows of the echelon matrix these span the row space of R [linear combinations of rows of R] and are linearly independent [echelon form] so they give the required basis the dimension of the row space of a matrix A is called the <i>rank</i> of A
Unit I - Vector spaces 71	Unit I - Vector spaces 72

٦Г

Example: basis finding (casting out algorithm) Basis finding: casting out using column vectors an alternative method to find a basis for the space W repeat example slide 64 using the casting out algorithm spanned by a given set of vectors: write the given vectors as the columns of a matrix C and write them as the columns of a matrix C row reduce to echelon form: this represents the system of equations obtained when writing an _ arbitrary vector as a lc of the given ones [see slides 42&43] 3 - $\begin{bmatrix} -2 & 3 & 8 \\ 5 & 1 & -3 \\ -3 & -4 & -5 \end{bmatrix} \sim \begin{bmatrix} 0 & 7 & 14 \\ 0 & 9 & 18 \\ 0 & 2 & 4 \end{bmatrix}$ $\sim \left| \begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 0 \end{array} \right|$ row reduce [i.e. using row operations] matrix C to echelon form columns in the echelon matrix that don't have pivots correspond 0 0 0 to arbitrary coefficients in the lc the corresponding vectors in C can therefore be expressed in recall this is motivated by writing an arbitrary vector terms of the vectors that do match columns with pivots (a,b,c,d)∈R⁴ as: so cast all the dependent vectors out and retain only the vectors (a,b,c,d) = x(1,-2,5,-3)+y(2,3,1,-4)+z(3,8,-3,-5)corresponding to columns with pivots to give the basis for W is this consistent with the row space algorithm?? and solving for the unknown coefficients in the lc... Unit I - Vector spaces 73 Unit I - Vector spaces 74 ... Example: basis finding (casting out algorithm) Casting out algorithm another way of thinking of the casting out algorithm... any vector v∈W must satisfy the restrictions on a,b,c,d • that come from the zero rows in the echelon matrix suppose A ~ M echelon form the non-zero rows in the echelon matrix indicate that z is • the columns in M with pivot entries are a basis for the arbitrary in the lc that expresses v column space M so only the first two vectors are necessary in this Ic the corresponding columns in A are a basis for the • we conclude that these are a basis for W: column space of A [why?] $\{(1, -2, 5, -3), (2, 3, 1, -4)\}$ examine a simple example to see why this works in particular W is two dimensional as found previously more on this result when we study solution spaces of in this example: linear systems... – rank of R = 2

– rank of C = 2

 there is no discrepancy between the methods - they each find a valid basis for W

Unit I - Vector spaces

An **IMPORTANT** result about rank

Example: rank of a matrix

Unit I - Vector spaces

76

 Vector spaces: Roadmap linear combinations and span matrix spaces row space and column space of a matrix elementary row operations row equivalent matrices echelon form linear independence basic results how to check it for a set of vectors 	 Vector spaces: Roadmap basis of a vector space definition dimension (finite dimensional v.s.) basis finding methods [solving the linear combination with arbitrary constants] rowspace method column method (casting out) rank of a matrix rank A = rank A^T vector space sums dim(U+W) = dimU + dimW - dim(U∩W) direct sum U⊕W provides unique decomposition
Unit I - Vector spaces 91	Unit I - Vector spaces 92