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Outline

• definition and examples

• subspaces and more examples

• three key concepts

– linear combinations and span

– linear independence

– bases and dimension

• sums and direct sums of vector spaces
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Vector spaces

• need two mathematical objects....

• set V of things called vectors u,v,w...! V

• set F of numbers called scalars k,l,m...! F

– a real vector space uses real scalars R

– a complex vector space uses complex scalars C

– you may occasionally see binary vector spaces
for which scalars can be {0,1}

• most (but not all) of the work here will
involve real vector spaces
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Vector space definition

• V is a vector space over F if useful algebraic
operations are defined which satisfy various rules

– the operations are modelled on the customary ones for
operating with vectors in Euclidean space

– the rules are abstracted from observations about useful
properties for vectors in Euclidean space

– the rules are reduced to a (minimal) set of axioms which
are required to model the behaviour of vectors in
Euclidean space

• the vectors in V can be ANY mathematical
objects that provide a convenient and useful
structure so don’t get too caught up in the
geometric motivation

Unit I - Vector spaces 5

Vector addition axioms

For any u,v ! V the vector sum u+v is defined and

satisfies for all u,v,w ! V:

1. u+v ! V [closure]

2. u+v = v+u [commutative]

3. u+(v+w) = (u+v)+w [associative]

4. there is an additive identity 0 ! V so that u+0 = u

[zero vector]

5. there is a vector -u ! V so that u+(-u) = 0 [additive

inverse]
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Scalar multiplication axioms

For any u ! V and k ! F the scalar multiple ku is

defined and satisfies for all u,v ! V and k,l ! F :

6. ku ! V [closure]

7. k(u+v) = ku+kv [vector sum distributive]

8. (k+l)u = ku+lu [scalar sum distributive]

9. k(lu) = (kl)u [scalar multiplication associative]

10. 1u = u [an odd one but necessary to connect the

two operations]
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Re-cap

• A vector space involves
– a set of vectors V

– a vector sum to make new vectors (u+v)

– a set of scalars F

– a scalar multiple to make new vectors (kv)

– various rules which are necessary if we want
these operations to behave like vectors in
Euclidean space

• as always the rules are reduced to a
minimal set of axioms (memorize them*)

* Hint: pay particular attention to red stuff
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Example: zero vector space

• any vector space has to have at least

one vector, i.e. the zero vector [see

axiom 4]

• the smallest vector space is the zero

space {0}

• 0+0 = 0
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Example: Euclidean spaces

• Fn = the set of all n-tuples of elements in F

• real space Rn, complex space Cn

• vector space operations are defined as usual
coordinate-wise:

(a1,a2,...,an) + (b1,b2,...,bn) = (a1+b1, a2+b2,..., an+bn)

k(a1,a2,...,an) = (ka1,ka2,...,kan)

• the zero vector is (0,0,...,0)

• the additive inverse -(a1,a2,...,an) = (-a1,-a2,...,-an)

• notation conventions sometimes convenient
– u = (u1,u2,...,un) etc

– lists of u vectors can be written with superscripts u1, u2 etc
if necessary
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Example: Polynomial spaces

• general polynomial space is P(t) = the set of all

polynomials p(t) = a0+ a1t + a2t
2 + ... akt

k with
coefficients ai ! F, any degree k

• vector space operations:

– p(t) + q(t) is the polynomial defined by adding all the terms

in both p(t) and q(t)

– kp(t) is the polynomial defined by multplying each term of

p(t) by k

• zero vector is the polynomial with no terms at all

• the additive inverse of p(t) is the polynomial with all

the terms of p(t) given opposite sign
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Example: A binary vector space

• V is the collection of all subsets of a given set

• sum of two subsets E1 and E2 is the symmetric

difference:
E1+E2 = (E1"E2) - (E1#E2)

• scalar multiples (there are only two scalars) of E

are defined by

1E = E and 0E = Ø

• zero vector is Ø

• -E = E, i.e. its own additive inverse
E+(-E) = E + E = (E"E) - (E#E) = E - E = Ø 
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Example: Matrices

• Mm,n = the space of all mxn matrices (arrays of scalar entries,

with m rows and n columns)

• this matrix is often written in simple notation as A = (aij)

• matrix sum and scalar multiple are defined component-wise:

A+B = (aij) + (bij) = (aij + bij)

kA = k(aij) = (kaij)

• zero matrix 0 = (0)

• additive inverse of (aij) is (-aij)
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Example: Function spaces

• X = any set, V = {f:X$F}, i.e. set of all scalar-
valued functions on X

• vector space operations:
f + g is the function defined by adding point-wise:

(f+g)(x) = f(x) + g(x)

kf is the function defined by scalar multiplying pointwise:

(kf)(x) = kf(x)

• zero vector is the function which is identically zero:
f(x) = 0 all x

• the additive inverse of f(x) is the function -f defined
by defined by (-f)(x) = -(f(x))

• X is typically an open interval (a,b), a closed
interval [a,b], or an infinite interval (-",")
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Some simple results

a) the sum u1 + u2 + ... + um is unambiguous
without parentheses

b) the zero vector is unique

c) the additive inverse -u of u is unique

d) if u+w = v+w then u = v [cancellation law]

e) subtraction of vectors can be defined by

u-v = u+(-v)
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Some more simple results

f) k0 = 0

 k0 = k(0+0) = k0 + k0

 0 = k0+(-k0) = (k0 + k0) + (-k0)

   = k0 + (k0 + (-k0)) = k0 + 0 = k0

g) 0u = 0

0u = (0+0)u = 0u + 0u

0 = 0u + (-0u) = (0u + 0u) + (-0u)

   = 0u + (0u + -(0u)) = 0u + 0 = 0u
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And some more simple results

h) ku = 0 implies k = 0 or u = 0

 ku = 0 and k ! 0 then

u = 1u = (k-1k)u = k-1(ku) = k-1(0) = 0

i) (-k)u = -ku = k(-u)

0 = k0 = k(-u+u) = k(-u) + ku

so k(-u) = -ku [why?]

Also 0 = 0u = (k - k)u = ku +(-k)u

so (-k)u = -ku [why?]
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Non-examples: NOT a vector space

V = {(a,b)!R2 so that ....}

i. (a,b) + (c,d) = (a+c,b+d) & k(a,b) = (ka,b)
[0(a,b) = (0,b) ! 0 in general]

ii. (a,b) + (c,d) = (a,b) & k(a,b) = (ka,kb)
[(a,b)+(c,d) = (a,b) ! (c,d) = (c,d)+ (a,b) in general]

iii. (a,b) + (c,d) = (a+c,b+d) & k(a,b) = (k2a,k2b)
[(r+s)(a,b) = ((r+s)2a,(r+s)2b) ! (r2a, r2b) + (s2a, s2b) =

r(a,b)+s(a,b) in general]

iv. (a,b)+(c,d) = (a+c,b+d) & k(a,b) = (ka,0)
[ALL axioms ok EXCEPT the weird one #10:

1(a,b) = (1a,0) = (a,0) ! (a,b) in general]
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Subspaces

• a subset W%V is a subspace of V if it is a vector
space with the operations inherited from V

• handy notation W<V (not in text)

• to confirm W is a subspace you only need to check
that:

– 0 ! W [or just non-empty]

– u,v ! W implies u+v ! W [closed under vector sums]

– u ! W, k ! F implies ku ! W [closed under scalar
multiples]

all the other axioms are automatic by virtue of
being inherited from V

• {0} and V are ss of any vs V

• I use ‘ss’ for subspace and ‘vs’ for vector space
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Examples: Euclidean subspaces

• subspaces of Euclidean space R3 [any ss must

include the origin]:

– the origin {0}

– a line through the origin

– a plane through to origin

– all of R3

• subspaces of Euclidean space Rn

– the origin {0}

– ....

– hyperplane

– all of Rn
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How to check if W is a subspace

• in unit V [when we’ve learned about inner products
and orthogonality] we’ll learn simple ways to derive
and manipulate equations of lines and
(hyper)planes in R3 (and Rn)

• for now we can check that these are subspaces

• to re-iterate we need to check two things to show
that a non-empty W < V:

1. If u,v ! W then so is u+v.

2. If u ! W then so is ku for any scalar k.

• this is done by ...
– examining the rule which defines the vectors in W and

– checking if it is satisfied in 1 & 2 above
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Check: Hyperplane is a subspace of Rn

If u,v!H then & aiui = & aivi = 0.

1. We need to check u+v!H? See if u+v satisfies the
equation for H....

2. We also need to check ku!H? See if ku satisfies the
H equation....

3. We should also check that H has at least one vector,
e.g. the zero vector.

Conclusion: H<Rn

– the RHS in the H equation has to be zero or neither closure
check works

– only hyperplanes passing through the origin are ss of Rn
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Matrix transpose AT

• the transpose of an mxn matrix A = (aij) is

AT = (aji)

• example

• A is symmetric if A = AT and anti-symmetric A = -AT

• these types of matrices must be square, e.g.
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Examples: subspaces of Mm,n

• the symmetric matrices form a subspace of Mn,n

– A,B symmetric then (A+B)T = AT + BT = A + B so
A+B is symmetric

– A symmetric then (kA)T = (kaij)
T = (kaji) = kA so

kA is symmetric

• similarly the anti-symmetric matrices form a
subspace of Mn,n

• another ss of Mm,n: mxn matrices for which a11 = 0
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Examples: polynomial subspaces

• Pn = the set of all polynomials of degree n or less

(i.e. n is the maximum degree):

p(t) = a0+ a1t + a2t
2 + ... ant

n (fixed n)

• Pn(t) < P(t)

• we have a chain of polynomial subspaces:

P0(t) < P1(t) < P2(t) < ... < Pn(t) < ... P(t)

• each ss is a ss of any ss higher in the chain

• note that P0 is ‘indistinguishable’ from R

• another ss of P(t): all polynomials with even degree
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Examples: function subspaces

• the vs of real-valued functions X to R is written F(X,R)

• the sets of even functions f so that f(-x) = f(x)  and the
odd functions f so that f(-x) = -f(x) are ss

• the set of bounded functions f so that |f(x)| % M (some
real number M) is a subspace of F(X,R)

• other important subspaces of F(X,R):

– the continuous functions C0(X,R)

– functions with continuous first derivative C1(X,R)

– ...

– functions with continuous mth derivative Cm(X,R)

– infinitely differentiable functions C"(X,R)

• we have a chain of real-valued real function ss:

Pn < C"< ... < Cm < ... < C1 < C0 < F(R,R)
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Non-examples: Euclidean space

Subsets of R3 which are NOT subspaces:

• W = {v ! R3 | v1 # 0}

• W = {v ! R3 | v1 + v2 + v3 = 1}

[a plane not through the origin]

• W = {v ! R3 | vi is rational}
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Non-examples: function space

Subsets of F(R,R) which are NOT subspaces:

• W = {f : f(7) = 2 + f(1)}

• W = {f : f(x) # 0}
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REMEDIAL DIGRESSION: complex REMEDIAL DIGRESSION: complex numbers

• the set of complex numbers is C:

{z = x + iy,  x,y ! R} with i2 = -1

• x = Re(z) is the real part and y = Im(z) is the

imaginary part of z

• two concepts:

– the complex conjugate of z is

– the modulus of z is |z| = $(x2+y2)

• ....related by:

• if these are hazy study the examples in sec 1.7

carefully [review the stuff anyway]
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Complex Euclidean space Cn

• the set of n-tuples with complex entries is a vector

space Cn over R

• Cn is also a vs over C

• what’s the difference?

• Rn is a subspace of Cn considered to be a vs over

R, but....

• ...Rn is NOT a subspace of Cn over C, because ku
can have complex entries with k ! C & u ! Rn, so

ku would not be in Rn in general
 

Unit I - Vector spaces 30

Example: subspaces of the binary vs

• let V be the binary vector space defined on the

collection of subsets of the set {1,2,3,4}

• let W = {',123, 124, 34}, where 123 is a short

notation meaning the set {1,2,3} etc.

• is W a ss of V?

• it’s trivially closed under scalar multiples

• check that W is closed under vector sums:

 123 + 124 = 34 ! W

123 + 34 = 124 ! W

124 + 34 = 123 ! W

123 + 124 + 34 = ' ! W
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Motivational address

• is R a subspace of R3?

• geometrically the x-axis is a line in Euclidean

space, or...

• ...it is a line (i.e. R) without reference to its being

part of Euclidean space

• in this obvious sense R is a subspace of R3

• R can be considered the ‘same’ as the true ss:

W = {(x,y,z)!R3 : y = z = 0}

i.e. all points in R3 of the form (a,0,0), a!R

• this is a subtle but important distinction
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More motivational address

• we will develop concepts that make precise the

meaning of ‘sameness’ for vs ... isomorphism

• in this sense any ‘3-dimensional’ vs will be the
‘same’ as R3

• this is why all the vs examples we’ve looked at

seem to be variations on a theme (except binary)

• we have no precise meaning for the concept of
dimension yet either, only intuition

• also, if all n-dimensional vs are really the ‘same’

why do we develop all the different examples? 
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... and more

• vectors in R3 can be considered as entities v

motivated by the geometric approach, or...

• ... choose a reference frame, e.g. unit vectors

i = (1,0,0) j = (0,1,0) k = (0,0,1)

and express any vector v! R3 in terms of these:

v = v1i + v2j + v3k  = (v1, v2, v3)

• these are the coordinates of v with respect to the

standard unit vectors

• if we choose different unit vectors we get different
coordinates for the same vector v [e.g. frame of

reference in physics], but....
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...and even more

• ...no matter how we do this we’ll always need

exactly the same number of unit vectors

• this number of coordinates required defines the
dimension of R3

• the same concept can be used to define the

dimension of a general vs .... a basis

• in the R3 example we had to be careful to choose a
special set of vectors to define the coordinate axes

• for instance (1,0,0), (0,1,0) & (1,1,0) wouldn’t work

because (1,1,0) = (1,0,0)+(0,1,0)

• the concept of linear independence handles this
problem in the case of a general vs
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We need some more general vs concepts

• sameness, dimension, linear independence & basis

• now the other question: if all n-dimensional vs are

really the ‘same’ why do we develop all the different
examples?

• the answer is central to the problem-solving utility

of linear algebra in applications:

 ...because the powerful methods familiar from

R3 can be applied to study and analyse

problems involving a wide variety of different

entities (i.e. different types of vectors) 
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Linear combinations

• V is a vs over F

• choose some vectors { u1, u2, ...ur }

• for any scalars k1, k2,...,kr we can evaluate

w = k1u1 + k2u2 + ... + krur

and it’s guaranteed to be a vector in V too (why?)

• w is called a linear combination (lc) of u1, u2, ..., ur

 



Unit I - Vector spaces 37

Examples: linear combinations

• in R4 the vector (-1,1, 6,11) is a lc of the vectors

(1,2,0,4) & (1,1,-2,-1) ...

• in P3(t) the polynomial p(t) = 6 + 3t2 - 4t3 is a lc of the
polynomials p0(t) = 1, p1(t) = t, p2(t) = t2, p3(t) = t3 ...
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REMEDIAL DIGRESSION: solving systems

You should be able to solve the system:
  x + 2y         =  1

      -2x  - 3y +   z =  4  

5x         + 3z = -3
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Example: linear combinations

Express the vector t2+4t-3 ! P2 as a lc of the vectors:

{t2-2t+5, 2t2-3t, t+3} ..... [two solution approaches]
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Linear span

• given a set of vectors {u1, u2, ...ur} in a vs V

• we can form the set W of all vectors which are lc’s
of these ui vectors

– W = {w!V : w = k1u1 + k2u2 + ..... krur }

– ki any scalars

• W is called the (linear) span of the set of vectors
S = {u1, u2, ...ur}, or ...

• W is the (vector) space spanned by S

• S is called a spanning set for W

• we write W = Sp{u1, u2, ...ur} or W = Sp(S)
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Linear span

• Sp(S) is the smallest subspace of V containing the

vectors u1, u2, ...ur

– it’s definitely a subspace because it’s a subset and closed

to all vector sums and scalar products of the u1, u2, ...ur

– as well .... any ss W of V containing the S vectors must

also contain all lc of them, i.e. Sp(S) % W

– in fact the two closure checks for a ss are equivalent to

being closed under linear combinations of its vectors
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Example: Linear span

Show that Sp{(1,1,1),(1,2,3),(1,5,8)} = R3 [4.13 text]
– to show this requires that any vector (a,b,c)!R3 can be

written as a lc of these three vectors:

(a,b,c) = x(1,1,1) + y(1,2,3) + z(1,5,8)

– we have a system of equations

x+y+z = a        which     x+y+z  = a

x+2y+5z = b     reduces to       y+4z =b-a 

x+3y+8z = c            z = -c+2b-a

– the (unique) solution for the lc is

x = -a+5b-3c, y = 3a-7b+4c, z = -a+2b-c

– for example

   (1,6,-2) = 35(1,1,1) - 47(1,2,3) + 13(1,5,8)

   (0,-1,-2)= 1(1,1,1) - 1(1,2,3) + 0(1,5,8)      etc
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Example: Linear span

Find W = Sp{(1,1,1),(1,2,3),(3,5,7)}
– a vector (a,b,c)!W means it can be written as a lc of the

three spanning vectors given:

(a,b,c) = x(1,1,1) + y(1,2,3) + z(3,5,7)

– we have a system of equations

x+y+3z = a        which                 x+y+3z = a

x+2y+5z = b     reduces to          y+2z= b-a 

x+3y+7z = c               0 = a-2b+c

– there is no solution unless a-2b+c=0 in which case

 z = k (arbitrary), y = b-a-2k, x = 2a-b-k

– the condition a-2b+c=0 implies only vectors of the form

(a,b,2b-a) = a(1,0,-1)+b(0,1,2) are in W

– this shows that W is also spanned by just two vectors:

W = Sp{(1,0,-1),(0,1,2)}
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Linear independence

• any vector w ! Sp(u1, u2, ..., ur) can be expressed

as a lc w = k1u1 + k2u2 + ... + krur for some scalars ki

• the zero vector can certainly always be expressed
this way with all of the ki = 0, but...

• ... if there is some non-zero lc which gives the zero

vector then the set {u1, u2, ...ur} is called linearly

dependent

• equivalently {u1, u2, ...ur} is a linearly independent

set of vectors if k1u1 + k2u2 + ... + krur  = 0 implies all

the ki = 0  
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Simple examples: Linear independence

• {0} is always linearly dependent [why?]

• any set which includes the zero vector is linearly

dependent

• any set {v} with one single vector v ! 0 is linearly

independent [why?]

• a set of two non-zero vectors {u,v} is linearly

dependent if and only if u = kv, i.e. one is a scalar
multiple of the other

• with ei = (0,...,0,1,0,....,0), i.e. zero everywhere

except for a 1 in the ith position, the set {e1, e2, ...,

en} is linearly independent in Rn
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Simple examples: Linear independence

• the set {1, t, t2, ...., tn} is linearly independent in Pn

• in C(-(,() the set {1, x, cos x} is linearly

independent

• in C(-(,() the set {1, x, cos2x, sin2x} is linearly

dependent

–  because 1 - cos2x - sin2x = 0 (identically zero) is a non-

zero lc of the vectors that adds to the zero function

• in the binary vs on {1,2,3,4} the set {123,124, 34} is
linearly dependent

– 123 + 124 + 34 = Ø is a non-zero lc of vectors giving the

zero vector
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Connection between linear dependence and span

• a set {u1, u2, ...,ur} is linearly dependent if and only if at

least one ui is in the span of the other r-1 vectors

– dependency implies there is a lc k1u1 + k2u2  + ... + krur = 0 and

at least one ki ! 0

– so we can solve for ui = - (k1/ki)u1 - (k2/ki)u2  - ... - (kr/ki) ur (with

the ith rhs term omitted)

– this shows that ui is a non-zero lc of the other r-1 vectors,
i.e. ui ! Sp{u1, u2, ..., ui-1, ui+1, ... , ur}

– to prove the converse suppose that one vector is in the Sp of

the other r-1 vectors (re-number the list so it’s u1)

– we can write say u1 = c2u2 + c3u3  + ... + crur with not all ci = 0

– re-arranging gives a non-zero lc u1 - c2u2 - c3u3  - ... - crur = 0 so

the vectors are linearly dependent
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Linear dependence depends on the scalars

• consider the vectors u=(1+i,2i) & v=(1,1+i) !C2

• u&v are linearly dependent over complex scalars:

– assume u = kv and solve for k

– second coordinate: 2i = k(1+i) so k = 2i/(1+i) = 1+i

– this k also satisfies the first coordinate in u = kv

since 1+i = k1 = 1+i

• BUT u&v are linearly independent over the real scalars:

– ...because u = kv implies k = 1+i !C so u is not a

real scalar multiple of v
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Checking linear independence

• are the vectors {u,v,w} where u=(1,-2,1), v=(2,1,-1),

w=(7,-4,1) linearly dependent or independent?

• set (0,0,0) = xu + yv + zw and solve for x,y,z

• this is

• before reducing the system let’s streamline the work by
using a matrix of coefficients

• note this is just the matrix with the [u | v | w] as columns
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Checking linear independence

• so to check linear independence you can write the

given vectors as columns of a matrix and row-reduce it:

• this procedure is like reducing a system of equations

• in this example there is a non-zero solution (in fact an
infinite number of them) and so the vectors are linearly

dependent

• if we had got only the zero solution we would conclude

that the vectors are linearly independent because only
the zero lc gives the zero vector
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Row and column space of a matrix

• let A be an m)n matrix

• the rows of A can be considered as vectors R1, R2,
...,Rm !Rn

• the subspace of Rn spanned by the rows of A is

called the row space of A

• the columns of A can be considered as vectors C1,
C2, ...,Cn !Rm

• the subspace of Rm spanned by the columns of A is

called the column space of A
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Row equivalent matrices

• suppose B is obtained from A by a sequence of the

following operations:

1. interchance two rows Ri and Rj

2. replace a row Ri by a scalar multiple kRi

3. replace a row Ri by Ri + Rj

• these are called elementary row operations on A

• we write B ~ A

• B is said to be row equivalent to A
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Row equivalent matrices

• elementary row operations can be viewed as

operations on vectors in Rn (rows of A):

– interchange vectors Ri and Rj

– multiply a vector Ri by a scalar k

– replace a vector Ri by the sum Ri + Rj

• these operations do not affect the space Sp{R1, R2,

..., Rn} spanned by the rows

– the order of the spanning vectors is irrelevant

– vectors are replaced by linear combinations with other

vectors

– no vectors are eliminated

• row equivalent matrices have identical row

spaces
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Using row operations to check linear dependence

• this result should be considered along with the

technique described on slides 49&50

• we can check linear independence by

– arranging the vectors as the rows of a matrix

– performing row operations until the matrix is in

echelon form

– if there are less rows than the number of vectors
then the original vectors are linearly dependent

• two questions:

– what is echelon form?

– why did we use columns before [slide 49]?
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Echelon matrix

• we’ll defer the answer to the second question

• the leading non-zero entry in a row is called the

pivot entry of the row

• an echelon matrix is in the following form:

– all zero rows are at the bottom of the matrix

– the pivot entry in a row is in a column to the right of the

pivot entry in the preceding row

• the rows of an echelon matrix are linearly

independent [why?]
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Basis of a vector space

• let V = Sp{u1, u2, ...,ur}

• if w is any vector in V then {w, u1, u2, ...ur} is certainly

linearly dependent

• the spanning set itself {u1, u2, ...ur} may or may not be

linearly dependent, but if it’s linearly dependent....

• ...choose a ui which is a lc of the other r-1 vectors [slide

47]

• then V is also spanned by just those r-1 vectors

{u1,..., ui-1, ui+1,...,ur}

• continuing to ‘cast out’ dependent vectors, we eventually

arrive at a linearly independent set that still spans V

• this is called a basis of V (the plural is bases)
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Basis of a vector space
• a spanning set {u1, u2, u3, ... , un} for a vs V is a basis if:

– it is linearly independent, OR equivalently

– the expression of any vector in terms of basis vectors
is unique:       u = a1u1 + a2u2 + ... + anun

• all bases {u1, ...,un} for V have the same number of
vectors n

– not obvious - see proof 4.36 text

– n is called the dimension of V

– V is n-dimensional

– write dim V = n

• some vector spaces may be infinite dimensional (e.g.
function spaces, polynomial space P)

• think of a basis as a maximal linearly independent set
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Examples: standard bases

• the standard basis in Rn is the set of vectors {e1,e2,...,en}

defined on slide 45

– Rn is n-dimensional

– in R3 these are written i = (1,0,0), j = (0,1,0), k = (0,0,1)

• in Pn the mononomial basis is {1, t, t2, t3,..., tn}

– dim(Pn) = n+1

• the standard basis for the space of m)n matrices Mm,n

consists of the set of matrices {Eij} in which the ijth entry is

1 and all other entries are zero

– dim(Mm,n) = mn

• the binary vs on the set {1,2,...,n} has a basis {{1},{2},...{n}}

– this vs is n-dimensional
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Some useful results about vs bases

• if V is an n-dimensional vs then

– any n+1 vectors in V must be linearly dependent

– any set of n linearly independent vectors is a basis of V

– any spanning set with n vectors is a basis of V

• examples

– any four vectors in R3 must be dependent

– the vectors {1,1,1),(1,2,3),(2,-1,1)} are linearly

independent [check as per method on slide 54] so they

are a basis of R3.....
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Example: basis of a vector space

• ...show the set of vectors S = {(1,1,1),(1,2,3),(2,-1,1)} is a

basis for R3

• three vectors in R3 are a basis if and only if they are
linearly independent

• write as rows of a matrix and reduce to echelon form:

• three independent rows in the echelon matrix so the

vectors are independent

• S is a basis for R3
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Example: basis of a vector space

• check if the set of vectors S = {(1,1,2),(1,2,5),(5,3,4)} is a

basis for R3

• three vectors in R3 are a basis if and only if they are
linearly independent

• write as rows of a matrix and reduce to echelon form:

• only two independent rows in the echelon matrix so the

original vectors are linearly dependent

• S is NOT a basis for R3
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Subspaces of Rn

• a subspace W < R3 can have dimension no more than 3

• the (geometric) possibilities are:

– point - the origin (dim W = 0)

– line through the origin (dim W = 1)

– plane through the origin (dim W = 2)

– all of R3 (dim W = 3)

• a subspace of Rn can have dimension no more than n

• the hyperplane we defined for Rn [slide 21] is a ss of

dimension n-1
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Bases and subspaces

• any spanning set S of a finite dimensional vs W contains

a basis B obtained from S by deleting any vector that is a

linear combination of the preceding vectors in S

• any set S = {u1,...,ur} of linearly independent vectors in a

finite dimensional vs V can be extended to a basis B of V

 

W = Sp(S) < V

expand to a basis of V

reduce to a basis of W
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Example: bases and subspaces

• let W = Sp{(1,-2,5,-3),(2,3,1,-4),(3,8,-3,-5)} < R4

• find a basis for W and the dimension of W, and extend

this basis to a basis for all of R4

• write the given vectors as rows of a matrix and reduce to

echelon form:

• the non-zero rows of the echelon matrix form a basis of

the row space of the matrix, i.e. W

• so dim(W) = 2 with basis {(1,-2,5,-3),(0,7,-9,2)} ...

 

Unit I - Vector spaces 65

...Example: bases and subspaces

• to extend this to a basis for R4 requires four linearly

independent vectors including the two found above

• the simplest way to do this is to write an echelon matrix

• the row vectors in this are linearly independent (as are

the rows of ANY echelon matrix)

• the required basis (obviously not unique) for R4 is

therefore {(1,-2,5,-3),(0,7,-9,2),(0,0,1,0),(0,0,0,1)}
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Coordinates

• let V be a finite dimensional vs over F

• choose an ordered basis B = {u1,...,un}

• let u ! V be expressed as u = a1u1 + ... + anun in terms of

the selected basis

• the scalars a1,a2,...,an are called the coordinates of u with

respect to the basis B

• this defines an n-tuple [u]B = [a1,a2,...,an] !Fn called the

coordinate vector of u with respect to B

• choose a different basis B* = {v1,...,vn} and express u in

terms of B*: u = b1v1 + ... + bnvn

• the vector u is still the same but its coordinate vector
[u]B* = [b1,b2,...,bn] is now different
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Coordinates of vectors in Rn

• the way vectors in Rn are written as n-tuples implicitly

assumes a coordinate representation with respect to the

standard basis S

• with respect to S a vector v = (a1, ...,an)!Rn has

coordinates simply a1, ...,an, i.e. [v]S = [a1, ...,an]

• vectors in Rn can be represented with respect to other

bases as convenient

• this is called a change of coordinates

• useful in dynamics for instance when we change frame of

reference in R3
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Example: changing coordinates

• find the coordinates of the vector v = (2,3,4) with respect

to the basis B = {(1,1,1),(1,1,0),(1,0,0)} of R3

• write (2,3,4) = x(1,1,1) + y(1,1,0) + z(1,0,0)

• this gives the system of equations

• solution is x = 4, y = -1, z = -1

• so (2,3,4) = 4(1,1,1) -(1,1,0) - (1,0,0)

• [v]B = [4,-1,-1]B are the new coordinates of (2,3,4) with

respect to B

• this simple example should illustrate the concepts
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Example: coordinates in polynomial space

• find a basis for W = Sp{v1,v2,v3,v4} < P3 where

v1 =  t
3 - 2t2 + 4t + 1

v2 =  2t3 - 3t2 + 9t + 1

v3 =  t
3 + 6t - 5

v4 =  2t3 - 5t2 + 7t + 5

• the coordinates of these polynomials with respect to the

monomial basis {t3, t2, t,1} are

[v1] = (1, -2,4,1)

[v2] = (2, -3,9,1)

[v3] = (1, 0,6,-5)

[v4] = (2,-5,7,5)   ....
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...Example: coordinates

• we can check the original polynomials by checking the

coordinate vectors in R4

• write them as rows of a matrix and reduce to echelon
form

• the non-zero rows in the echelon matrix form a basis for

the row space, i.e. the space of coordinate vectors, so...

• ...the corresponding vectors {t3-2t2+4t+1, t2+t-3} are a
basis for W and dim(W) = 2
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Isomorphism

• there is a one:one correspondence between vectors in an

n-dimensional vs V over F and vectors in Fn

– associate a vector v with its coordinates [v]B with respect to some

basis B = {u1,...,un} of V

• this correspondence also preserves the vs operations

– let v = a1u1 + ... + anun and w = b1u1 + ... + bnun

– [v] + [w] = [a1,... ,an] + [b1,... ,bn] = [a1+b1,... ,an+bn] = [v+w]

– k[v] = k[a1,... ,an] = [ka1,... ,kan] = [kv]

• V and Fn are called isomorphic, i.e. ‘the same’

• we write V + Fn

• we can solve problems in other vs’s by using vectors in Rn

for the calculations [e.g. the previous example]
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Basis finding: row space algorithm

• to find a basis for the space W spanned by a given set of

vectors we can:

– write them as the rows of a matrix R

– W is the row space of R

– row reduce the matrix R to echelon form

– select the non-zero rows of the echelon matrix

– these span the row space of R [linear combinations of rows of R]

and are linearly independent [echelon form]

– so they give the required basis

• the dimension of the row space of a matrix A is called

the rank of A  
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Basis finding: casting out using column vectors

• an alternative method to find a basis for the space W

spanned by a given set of vectors:

– write them as the columns of a matrix C

– this represents the system of equations obtained when writing an

arbitrary vector as a lc of the given ones [see slides 42&43]

– row reduce [i.e. using row operations] matrix C to echelon form

– columns in the echelon matrix that don’t have pivots correspond

to arbitrary coefficients in the lc

– the corresponding vectors in C can therefore be expressed in

terms of the vectors that do match columns with pivots

– so cast all the dependent vectors out and retain only the vectors

corresponding to columns with pivots to give the basis for W

• is this consistent with the row space algorithm??
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Example: basis finding (casting out algorithm)

• repeat example slide 64 using the casting out algorithm

• write the given vectors as the columns of a matrix C and

row reduce to echelon form:

• recall this is motivated by writing an arbitrary vector
(a,b,c,d)!R4 as:

(a,b,c,d) = x(1,-2,5,-3)+y(2,3,1,-4)+z(3,8,-3,-5)

  and solving for the unknown coefficients in the lc...

 

Unit I - Vector spaces 75

...Example: basis finding (casting out algorithm)

• any vector v!W must satisfy the restrictions on a,b,c,d
that come from the zero rows in the echelon matrix

• the non-zero rows in the echelon matrix indicate that z is
arbitrary in the lc that expresses v

• so only the first two vectors are necessary in this lc

• we conclude that these are a basis for W:

{(1,-2,5,-3),(2,3,1,-4)}

• in particular W is two dimensional as found previously

• in this example:
– rank of R = 2

– rank of C = 2

• there is no discrepancy between the methods - they
each find a valid basis for W
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Casting out algorithm

• another way of thinking of the casting out algorithm...

• suppose A ~ M echelon form

• the columns in M with pivot entries are a basis for the

column space M

• the corresponding columns in A are a basis for the

column space of A [why?]

• examine a simple example to see why this works

• more on this result when we study solution spaces of

linear systems...
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An IMPORTANT result about rank

• for any matrix A: rank(A) = rank(AT)
– when we use the row space algorithm vs the casting out

algorithm the matrices are transposes [C=RT]

– so we’ll always get the same number of independent rows in

either of the reduced echelon forms

– i.e. the found bases will have the same number of vectors....as

they should

• we can also conclude for any matrix A that the row

and column space have the same

dimension
• proving these is more involved than difficult - see text
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Example: rank of a matrix

• find the ranks of the following matrices:

• an echelon matrix with two non-zero rows

• so rank(A) = 2 ....
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....Example: rank of a matrix

• row reduce BT instead of B [less work involved]:

• an echelon matrix with three non-zero rows

• so rank(B) = rank(BT) = 3

• as for the last matrix....rank(CT) = 2 since the rows of CT

are linearly independent [i.e. not multiples of each other]

• therefore rank(C) = rank(CT) = 2

• use properties of rank to simplify work as in this example
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Example: basis finding again

Find bases for the row space

and column space of A

• first reduce A to echelon form:

• the two non-zero rows of R are a basis for the row space of

A:  {(1,1,3,3), (0,1,1,2)}

• the two columns of R with pivot entries are a basis for the

column space of R so .....

• .... the corresponding columns of A are a basis for the

column space of A:   {(1,0,1,1)T,(1,2,0,1)T}
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....Example: basis finding again

Now find bases for the row (column) space of A consisting only

of rows (columns) of A

• previous answer is ok for the column space

• for the row space we need to be clever .....

• use AT and the casting out algorithm:

• columns 1&2 of AT are a basis for the column space of AT and so ....

• ...rows 1&2 of A are a basis for the row space of A: {(1,1,3,3),(0,2,2,4)}

• compare this answer to the one on the previous slide
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A question for understanding

• two row equivalent matrices A~B are related by a

sequence of row operations

• so the rows of B are l.c. of the rows of A, consequently...

• A and B have the same row space

• what about column space?

• do row equivalent matrices A and B have the same

column space?

 

ANSWER
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Sums of subspaces

• let V be a v.s. and take two subsets U,W%V

• the sum U+W = {u+w|u!U, w!W} consists of all v.s.

sums of vectors in the two subsets

• now if U,W are subspaces of V then U+W is also a

subspace [closure is easily checked]

• in fact U+W = span{U,W}

• also the intersection of two subspaces U#W is a

subspace of V

• if U,W are finite dimensional subspaces of V then

dim(U+W) = dim U + dim W - dim(U#W)

• this result is very IMPORTANT
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Example: Sums of subspaces

• U = {(a,b,0)!R3} is the xy-plane and W = {(0,c,d)!R3} is

the yz-plane

• the sum U+W = R3

• the intersection U#W = {(0,c,0)!R3} is the y-axis

• dim(U+W) = dim U + dim W - dim(U#W) = 2 + 2 - 1 = 3

as it should

• a vector (a,b,c) !R3 can be written as a sum of vectors

in U and W, but not uniquely, e.g.

(2,16,-12) = (2,4,0) + (0,12,-12)

      = (2,-8,0) + (0,24,-12) etc  
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Direct sums

• V is the direct sum of the subspaces U and W if

V= U+W   AND   U#W = {0}

• we write V = U,W for the direct sum

• the importance of direct sum:

V = U,W if and only if any vector v!V can be written

uniquely as a sum v=u+w, u!U, w!W

• if V = U,W then dim(U#W) = 0 (second condition

above) so in this case:

dim(U,W) = dim U + dim W
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Example: Direct sums of subspaces

• U = {(a,b,0)!R3} is the xy-plane and W = {(0,0,d)!R3} is

the z-axis

• then the direct sum U,W = R3

• dim(U+W) = dim U + dim W = 2 + 1 = 3 as it should

• a vector (a,b,c) !R3 can be written uniquely as a sum of

vectors in U and W, e.g.

(2,16,-12) = (2,16,0) + (0,0,-12)

and no other sum of these kinds of vectors will work
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Example: sums of subspaces

• compare this to text problem 4.54, but note typo in a) conclusion

• U = Sp{(1,4,0,-1),(2,-3,1,1)} and W = Sp{(0,1,1,1),(4,5,1,-1)}

• find bases for U+W and U#W

• U+W is the span of the four vectors, so write as rows and find a

basis for the row space:

• the first three rows of the echelon matrix 

{(1,4,0,-1),(0,1,1,1),(0,0,6,7)} are a basis for U+W

• now, to find U#W, characterize vectors in both U and W

• assume (x,y,z,w) ! U first, so (x,y,z,w) = a(1,4,0,-1)+b(2,-3,1,1)...
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...Example: sums of subspaces

• then

• so we have consistency conditions on x,y,z,w as per the last two

rows

• now do the same with (x,y,z,w)!W so that

(x,y,z,w) =  c(0,1,1, 1)+d(4,5,1,-1) and reduce to echelon form
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...Example: sums of subspaces

• again consistency for the last two rows provides conditions on the
vector if (x,y,z,w)!W

• arranging both sets of consistency conditions into one system:

• solve this by reducing the matrix of coefficients

• w is arbitrary, so pick say w = -1, then z = 1, y = 5, x = 4

• the required basis for U#W is then {(4,5,1,-1)}

 

Unit I - Vector spaces 90

Vector spaces: Roadmap

• definition of a vector space

– axioms

– elementary results

– standard examples

• Euclidean space Rn and Cn [NB review of complex arithmetic]

• matrix space

• function spaces

• polynomial spaces

• binary vector space

• subspaces

– definition

– standard examples

– checking by closure
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Vector spaces: Roadmap

• linear combinations and span

• matrix spaces

– row space and column space of a matrix

– elementary row operations

– row equivalent matrices

– echelon form

• linear independence

– basic results

– how to check it for a set of vectors
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Vector spaces: Roadmap

• basis of a vector space

– definition

– dimension (finite dimensional v.s.)

– basis finding methods

• [solving the linear combination with arbitrary constants]

• rowspace method

• column method (casting out)

• rank of a matrix

– rank A = rank AT

• vector space sums
– dim(U+W) = dimU + dimW - dim(U#W)

– direct sum U,W provides unique decomposition

 


