Unit I Vector Spaces

- definition and examples
- subspaces and more examples
- three key concepts
- linear combinations and span
- linear independence
- bases and dimension
- sums and direct sums of vector spaces

Vector spaces

- need two mathematical objects....
- set V of things called vectors $\mathrm{u}, \mathrm{v}, \mathrm{w} . . . \in \mathrm{V}$
- set F of numbers called scalars $\mathrm{k}, \mathrm{l}, \mathrm{m} . . . \in \mathrm{F}$
- a real vector space uses real scalars R
- a complex vector space uses complex scalars C
- you may occasionally see binary vector spaces for which scalars can be $\{0,1\}$
- most (but not all) of the work here will involve real vector spaces

Vector space definition

- V is a vector space over F if useful algebraic operations are defined which satisfy various rules
- the operations are modelled on the customary ones for operating with vectors in Euclidean space
- the rules are abstracted from observations about useful properties for vectors in Euclidean space
- the rules are reduced to a (minimal) set of axioms which are required to model the behaviour of vectors in Euclidean space
- the vectors in V can be ANY mathematical objects that provide a convenient and useful structure so don't get too caught up in the geometric motivation

Scalar multiplication axioms

For any $u, v \in V$ the vector sum $u+v$ is defined and satisfies for all $u, v, w \in V$:

1. $u+v \in V$ [closure]
2. $u+v=v+u$ [commutative]
3. $u+(v+w)=(u+v)+w$ [associative]
4. there is an additive identity $0 \in \mathrm{~V}$ so that $\mathrm{u}+0=\mathrm{u}$ [zero vector]
5. there is a vector $-u \in V$ so that $u+(-u)=0$ [additive inverse]

Re-cap

- A vector space involves
- a set of vectors V
- a vector sum to make new vectors ($u+v$)
- a set of scalars F
- a scalar multiple to make new vectors (kv)
- various rules which are necessary if we want these operations to behave like vectors in Euclidean space
- as always the rules are reduced to a minimal set of axioms (memorize them*)
* Hint: pay particular attention to red stuff

Example: zero vector space

- any vector space has to have at least one vector, i.e. the zero vector [see axiom 4]
- the smallest vector space is the zero space $\{0\}$
- $0+0=0$

Example: Euclidean spaces

- $F^{n}=$ the set of all n-tuples of elements in F
- real space R^{n}, complex space C^{n}
- vector space operations are defined as usual coordinate-wise:
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$ $\mathrm{k}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=\left(\mathrm{ka}_{1}, \mathrm{ka}_{2}, \ldots, \mathrm{ka}_{\mathrm{n}}\right)$
- the zero vector is $(0,0, \ldots, 0)$
- the additive inverse $-\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=\left(-\mathrm{a}_{1},-\mathrm{a}_{2}, \ldots,-\mathrm{a}_{\mathrm{n}}\right)$
- notation conventions sometimes convenient
- $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ etc
- lists of u vectors can be written with superscripts u^{1}, u^{2} etc if necessary

Example: Polynomial spaces

- general polynomial space is $\mathrm{P}(\mathrm{t})=$ the set of all polynomials $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots a_{k} t^{k}$ with coefficients $a_{i} \in F$, any degree k
- vector space operations:
- $p(t)+q(t)$ is the polynomial defined by adding all the terms in both $p(t)$ and $q(t)$
- $\quad \mathrm{kp}(\mathrm{t})$ is the polynomial defined by multplying each term of $p(t)$ by k
- zero vector is the polynomial with no terms at all
- the additive inverse of $p(t)$ is the polynomial with all the terms of $p(t)$ given opposite sign

Example: A binary vector space

- V is the collection of all subsets of a given set
- sum of two subsets E_{1} and E_{2} is the symmetric difference:

$$
E_{1}+E_{2}=\left(E_{1} \cup E_{2}\right)-\left(E_{1} \cap E_{2}\right)
$$

- scalar multiples (there are only two scalars) of E are defined by

$$
1 \mathrm{E}=\mathrm{E} \text { and } 0 \mathrm{E}=\varnothing
$$

- zero vector is \varnothing
- $-E=E$, i.e. its own additive inverse

$$
\mathrm{E}+(-\mathrm{E})=\mathrm{E}+\mathrm{E}=(\mathrm{E} \cup \mathrm{E})-(\mathrm{E} \cap \mathrm{E})=\mathrm{E}-\mathrm{E}=\varnothing
$$

Example: Matrices

- $\quad M_{m, n}=$ the space of all $m \times n$ matrices (arrays of scalar entries, with m rows and n columns)

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- this matrix is often written in simple notation as $A=\left(a_{i j}\right)$
- matrix sum and scalar multiple are defined component-wise:

$$
\begin{aligned}
& A+B=\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right) \\
& k A=k\left(a_{i j}\right)=\left(k a_{i j}\right)
\end{aligned}
$$

- zero matrix $0=(0)$
- additive inverse of $\left(\mathrm{a}_{\mathrm{ij}}\right)$ is $\left(-\mathrm{a}_{\mathrm{ij}}\right)$

Example: Function spaces

- $X=$ any set, $V=\{f: X \rightarrow F\}$, i.e. set of all scalarvalued functions on X
- vector space operations:
$f+g$ is the function defined by adding point-wise: $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
kf is the function defined by scalar multiplying pointwise: $(k f)(x)=k f(x)$
- zero vector is the function which is identically zero: $f(x)=0$ all x
- the additive inverse of $f(x)$ is the function - f defined by defined by $(-f)(x)=-(f(x))$
- $\quad X$ is typically an open interval (a, b), a closed interval $[a, b]$, or an infinite interval $(-\infty, \infty)$

Some simple results

a) the sum $u_{1}+u_{2}+\ldots+u_{m}$ is unambiguous without parentheses
b) the zero vector is unique
c) the additive inverse $-u$ of u is unique
d) if $u+w=v+w$ then $u=v$ [cancellation law]
e) subtraction of vectors can be defined by $u-v=u+(-v)$

Some more simple results
f) $\mathrm{kO}=\mathbf{0}$

$$
\begin{aligned}
k 0 & =k(0+0)=k 0+k 0 \\
0 & =k 0+(-k 0)=(k 0+k 0)+(-k 0) \\
& =k 0+(k 0+(-k 0))=k 0+0=k 0
\end{aligned}
$$

g) $0 u=0$

$$
\begin{aligned}
0 u & =(0+0) u=0 u+0 u \\
\mathbf{0} & =0 u+(-0 u)=(0 u+0 u)+(-0 u) \\
& =0 u+(0 u+-(0 u))=0 u+0=0 u
\end{aligned}
$$

And some more simple results
h) $\mathrm{ku}=\mathbf{0}$ implies $\mathrm{k}=0$ or $\mathrm{u}=\mathbf{0}$
$\mathrm{ku}=0$ and $\mathrm{k} \neq 0$ then
$\mathrm{u}=1 \mathrm{u}=\left(\mathrm{k}^{-1} \mathrm{k}\right) \mathrm{u}=\mathrm{k}^{-1}(\mathrm{ku})=\mathrm{k}^{-1}(0)=0$
i) $(-k) u=-k u=k(-u)$

$$
\begin{gathered}
0=k 0=k(-u+u)=k(-u)+k u \\
\text { so } k(-u)=-k u[w h y ?] \\
\text { Also } 0=0 u=(k-k) u=k u+(-k) u \\
\text { so }(-k) u=-k u[w h y ?]
\end{gathered}
$$

Non-examples: NOT a vector space
$V=\left\{(a, b) \in R^{2}\right.$ so that $\left.\ldots ..\right\}$
i. $\quad(a, b)+(c, d)=(a+c, b+d) \& k(a, b)=(k a, b)$ $[0(a, b)=(0, b) \neq 0$ in general]
ii. $\quad(a, b)+(c, d)=(a, b) \& k(a, b)=(k a, k b)$ $[(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(\mathrm{a}, \mathrm{b}) \neq(\mathrm{c}, \mathrm{d})=(\mathrm{c}, \mathrm{d})+(\mathrm{a}, \mathrm{b})$ in generall
iii. $\quad(a, b)+(c, d)=(a+c, b+d) \& k(a, b)=\left(k^{2} a, k^{2} b\right)$ $\left[(r+s)(a, b)=\left((r+s)^{2} a,(r+s)^{2} b\right) \neq\left(r^{2} a, r^{2} b\right)+\left(s^{2} a, s^{2} b\right)=\right.$ $r(a, b)+s(a, b)$ in general]
iv. $(a, b)+(c, d)=(a+c, b+d) \& k(a, b)=(k a, 0)$ [ALL axioms ok EXCEPT the weird one \#10: $1(\mathrm{a}, \mathrm{b})=(1 \mathrm{a}, 0)=(\mathrm{a}, 0) \neq(\mathrm{a}, \mathrm{b})$ in general]

Subspaces

- a subset $\mathrm{W} \subset \mathrm{V}$ is a subspace of V if it is a vector space with the operations inherited from V
- handy notation $\mathrm{W}<\mathrm{V}$ (not in text)
- to confirm W is a subspace you only need to check that:
- $\quad 0 \in \mathrm{~W}$ [or just non-empty]
- $u, v \in W$ implies $u+v \in W$ [closed under vector sums]
- $u \in W, k \in F$ implies $k u \in W$ [closed under scalar multiples]
all the other axioms are automatic by virtue of being inherited from V
- $\{0\}$ and V are ss of any vs V
- I use 'ss' for subspace and 'vs' for vector space

Examples: Euclidean subspaces

- subspaces of Euclidean space R^{3} [any ss must include the origin]:
- the origin $\{0\}$
- a line through the origin
- a plane through to origin
- all of R^{3}
- subspaces of Euclidean space R^{n}
- the origin $\{0\}$
-
- hyperplane $W=\left\{w \in R^{n} \mid \sum a_{i} w_{i}=0\right\}$
- all of R^{n}

How to check if W is a subspace

- in unit V [when we've learned about inner products and orthogonality] we'll learn simple ways to derive and manipulate equations of lines and (hyper)planes in R^{3} (and R^{n})
- for now we can check that these are subspaces
- to re-iterate we need to check two things to show that a non-empty $\mathrm{W}<\mathrm{V}$:

1. If $u, v \in W$ then so is $u+v$.
2. If $u \in W$ then so is ku for any scalar k.

- this is done by ...
- examining the rule which defines the vectors in W and
- checking if it is satisfied in $1 \& 2$ above

Check: Hyperplane is a subspace of R^{n}

If $u, v \in H$ then $\Sigma a_{i} u_{i}=\Sigma a_{i} v_{i}=0$.

1. We need to check $u+v \in H$? See if $u+v$ satisfies the equation for H....
2. We also need to check ku$\in H$? See if ku satisfies the H equation....
3. We should also check that H has at least one vector, e.g. the zero vector.

Conclusion: $\mathrm{H}<\mathrm{R}^{\mathrm{n}}$

- the RHS in the H equation has to be zero or neither closure check works
- only hyperplanes passing through the origin are ss of R^{n}

Matrix transpose A^{\top}

- the transpose of an mxn matrix $A=\left(a_{i j}\right)$ is

$$
A^{\top}=\left(a_{j j}\right)
$$

- example

$$
A=\left[\begin{array}{rrrr}
-1 & 3 & -4 & 2 \\
2 & 0 & -1 & -2
\end{array}\right] \quad A^{T}=\left[\begin{array}{rr}
-1 & 2 \\
3 & 0 \\
-4 & -1 \\
2 & -2
\end{array}\right]
$$

- A is symmetric if $\mathrm{A}=\mathrm{A}^{\top}$ and anti-symmetric $\mathrm{A}=-\mathrm{A}^{\top}$
- these types of matrices must be square, e.g.
$A=\left[\begin{array}{rrr}-1 & 3 & -4 \\ 3 & 0 & -1 \\ -4 & -1 & 6\end{array}\right]=A^{T} \quad A=\left[\begin{array}{rrr}0 & 3 & -4 \\ -3 & 0 & -1 \\ 4 & 1 & 0\end{array}\right]=-A^{T}$

Examples: subspaces of $M_{m, n}$

- the symmetric matrices form a subspace of $M_{n, n}$
- A, B symmetric then $(A+B)^{\top}=A^{\top}+B^{\top}=A+B$ so $A+B$ is symmetric
- A symmetric then $(k A)^{\top}=\left(k a_{i j}\right)^{\top}=\left(k a_{\mathrm{ji}}\right)=k A$ so kA is symmetric
- similarly the anti-symmetric matrices form a subspace of $M_{n, n}$
- another ss of $\mathrm{M}_{\mathrm{m}, \mathrm{n}}: m \times n$ matrices for which $\mathrm{a}_{11}=0$

Examples: polynomial subspaces

- $P_{n}=$ the set of all polynomials of degree n or less (i.e. n is the maximum degree): $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots a_{n}{ }^{t}($ fixed $n)$
- $\quad P_{n}(t)<P(t)$
- we have a chain of polynomial subspaces:

$$
P_{0}(t)<P_{1}(t)<P_{2}(t)<\ldots<P_{n}(t)<\ldots P(t)
$$

- each ss is a ss of any ss higher in the chain
- note that P_{0} is 'indistinguishable' from R
- another ss of $P(t)$: all polynomials with even degree

Examples: function subspaces

- the vs of real-valued functions X to R is written $F(X, R)$
- the sets of even functions f so that $\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$ and the odd functions f so that $f(-x)=-f(x)$ are ss
- the set of bounded functions f so that $|f(x)| \leq M$ (some real number M) is a subspace of $F(X, R)$
- other important subspaces of $F(X, R)$:
- the continuous functions $C^{0}(X, R)$
- functions with continuous first derivative $C^{1}(X, R)$
- ...
- functions with continuous mth derivative $C^{m}(X, R)$
- infinitely differentiable functions $C^{\infty}(X, R)$
- we have a chain of real-valued real function ss:

$$
P_{n}<C^{\infty}<\cdots<C^{m}<\cdots<C^{1}<C^{0}<F(R, R)
$$

Non-examples: Euclidean space
Subsets of R^{3} which are NOT subspaces:

- $W=\left\{v \in R^{3} \mid v_{1} \geq 0\right\}$
- $W=\left\{v \in R^{3} \mid v_{1}+v_{2}+v_{3}=1\right\}$
[a plane not through the origin]
- $W=\left\{v \in R^{3} \mid v_{i}\right.$ is rational $\}$

Non-examples: function space

Subsets of $F(R, R)$ which are NOT subspaces:

- $W=\{f: f(7)=2+f(1)\}$
- $W=\{f: f(x) \geq 0\}$

REMEDIAL DIGRESSION: complex numbers

- the set of complex numbers is C :

$$
\{z=x+i y, x, y \in R\} \text { with } i^{2}=-1
$$

- $x=\operatorname{Re}(z)$ is the real part and $y=\operatorname{Im}(z)$ is the imaginary part of z
- two concepts:
- the complex conjugate of \mathbf{z} is $\bar{z}=x-i y$
- the modulus of z is $|z|=\sqrt{ }\left(x^{2}+y^{2}\right)$
-related by $z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}=|z|^{2}$
- if these are hazy study the examples in sec 1.7 carefully [review the stuff anyway]

Complex Euclidean space $\mathrm{C}^{\text {n }}$

- the set of n-tuples with complex entries is a vector space C^{n} over R
- C^{n} is also a vs over C
- what's the difference?
- R^{n} is a subspace of C^{n} considered to be a vs over R , but....
- ... R^{n} is NOT a subspace of C^{n} over C, because ku can have complex entries with $k \in C$ \& $u \in R^{n}$, so ku would not be in R^{n} in general

Example: subspaces of the binary vs

- let V be the binary vector space defined on the collection of subsets of the set $\{1,2,3,4\}$
- let $W=\{\varnothing, 123,124,34\}$, where 123 is a short notation meaning the set $\{1,2,3\}$ etc.
- is W a ss of V ?
- it's trivially closed under scalar multiples
- check that W is closed under vector sums:

$$
\begin{aligned}
& 123+124=34 \in \mathrm{~W} \\
& 123+34=124 \in \mathrm{~W} \\
& 124+34=123 \in \mathrm{~W} \\
& 123+124+34=\varnothing \in \mathrm{W}
\end{aligned}
$$

Motivational address

- is R a subspace of R^{3} ?
- geometrically the x-axis is a line in Euclidean space, or...
- ...it is a line (i.e. R) without reference to its being part of Euclidean space
- in this obvious sense R is a subspace of R^{3}
- $\quad R$ can be considered the 'same' as the true ss:
$W=\left\{(x, y, z) \in R^{3}: y=z=0\right\}$
i.e. all points in R^{3} of the form $(a, 0,0), a \in R$
- this is a subtle but important distinction meaning of 'sameness' for vs ... isomorphism
- in this sense any '3-dimensional' vs will be the 'same' as R ${ }^{3}$
- this is why all the vs examples we've looked at seem to be variations on a theme (except binary)
- we have no precise meaning for the concept of dimension yet either, only intuition
- also, if all n-dimensional vs are really the 'same' why do we develop all the different examples?

... and more

- vectors in R^{3} can be considered as entities v motivated by the geometric approach, or...
- ... choose a reference frame, e.g. unit vectors

$$
i=(1,0,0) \quad j=(0,1,0) \quad k=(0,0,1)
$$

and express any vector $v \in R^{3}$ in terms of these:

$$
v=v_{1} i+v_{2} j+v_{3} k=\left(v_{1}, v_{2}, v_{3}\right)
$$

- these are the coordinates of v with respect to the standard unit vectors
- if we choose different unit vectors we get different coordinates for the same vector v [e.g. frame of reference in physics], but....

...and even more

- ...no matter how we do this we'll always need exactly the same number of unit vectors
- this number of coordinates required defines the dimension of R^{3}
- the same concept can be used to define the dimension of a general vs a basis
- in the R^{3} example we had to be careful to choose a special set of vectors to define the coordinate axes
- for instance $(1,0,0),(0,1,0) \&(1,1,0)$ wouldn't work because $(1,1,0)=(1,0,0)+(0,1,0)$
- the concept of linear independence handles this problem in the case of a general vs

We need some more general vs concepts

- sameness, dimension, linear independence \& basis
- now the other question: if all n-dimensional vs are really the 'same' why do we develop all the different examples?
- the answer is central to the problem-solving utility of linear algebra in applications:
...because the powerful methods familiar from R^{3} can be applied to study and analyse problems involving a wide variety of different entities (i.e. different types of vectors)

Linear combinations

- $\quad \mathrm{V}$ is a vs over F
- choose some vectors $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{r}}\right\}$
- for any scalars $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{r}}$ we can evaluate

$$
\mathrm{w}=\mathrm{k}_{1} \mathrm{u}_{1}+\mathrm{k}_{2} \mathrm{u}_{2}+\ldots+\mathrm{k}_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}
$$

and it's guaranteed to be a vector in V too (why?)

- $\quad w$ is called a linear combination (lc) of $u_{1}, u_{2}, \ldots, u_{r}$

REMEDIAL DIGRESSION: solving systems

- in R^{4} the vector $(-1,1,6,11)$ is a Ic of the vectors $(1,2,0,4) \&(1,1,-2,-1) \ldots$

You should be able to solve the system:

$$
\begin{array}{r}
x+2 y=1 \\
-2 x-3 y+z=4 \\
5 x+3 z=-3
\end{array}
$$

- in $P_{3}(t)$ the polynomial $p(t)=6+3 t^{2}-4 t^{3}$ is a lc of the polynomials $\mathrm{p}_{0}(\mathrm{t})=1, \mathrm{p}_{1}(\mathrm{t})=\mathrm{t}, \mathrm{p}_{2}(\mathrm{t})=\mathrm{t}^{2}, \mathrm{p}_{3}(\mathrm{t})=\mathrm{t}^{3} \ldots$

Example: linear combinations

Express the vector $t^{2}+4 t-3 \in P_{2}$ as a lc of the vectors: $\left\{t^{2}-2 t+5,2 t^{2}-3 t, t+3\right\} \ldots .$. [two solution approaches]

Linear span

- given a set of vectors $\left\{u_{1}, u_{2}, \ldots u_{r}\right\}$ in a vs V
- we can form the set W of all vectors which are Ic's of these u_{i} vectors
- $W=\left\{w \in V: w=k_{1} u_{1}+k_{2} u_{2}+\ldots . . k_{r} u_{r}\right\}$
- k_{i} any scalars
- W is called the (linear) span of the set of vectors S $=\left\{u_{1}, u_{2}, \ldots u_{r}\right\}$, or \ldots
- W is the (vector) space spanned by S
- $\quad \mathrm{S}$ is called a spanning set for W
- we write $\mathrm{W}=\operatorname{Sp}\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{r}}\right\}$ or $\mathrm{W}=\operatorname{Sp}(\mathrm{S})$

Linear span

- $\quad \mathrm{Sp}(\mathrm{S})$ is the smallest subspace of V containing the vectors $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{r}}$
- it's definitely a subspace because it's a subset and closed to all vector sums and scalar products of the $u_{1}, u_{2}, \ldots u_{r}$
- as well any ss W of V containing the S vectors must also contain all Ic of them, i.e. $\mathrm{Sp}(\mathrm{S}) \subset \mathrm{W}$
- in fact the two closure checks for a ss are equivalent to being closed under linear combinations of its vectors

Example: Linear span

Show that $\operatorname{Sp}\{(1,1,1),(1,2,3),(1,5,8)\}=R^{3}[4.13$ text $]$

- to show this requires that any vector $(a, b, c) \in R^{3}$ can be written as a lc of these three vectors:

$$
(a, b, c)=x(1,1,1)+y(1,2,3)+z(1,5,8)
$$

- we have a system of equations

$x+y+z=a$	which	$x+y+z=a$
$x+2 y+5 z=6$	reduces to	$y+4 z=b-a$
$x+3 y+8 z=c$		$z=-c+2 b$

$$
x+3 y+8 z=c \quad z=-c+2 b-a
$$

- the (unique) solution for the Ic is

$$
x=-a+5 b-3 c, y=3 a-7 b+4 c, z=-a+2 b-c
$$

- for example
$(1,6,-2)=35(1,1,1)-47(1,2,3)+13(1,5,8)$
$(0,-1,-2)=1(1,1,1)-1(1,2,3)+0(1,5,8) \quad$ etc

Example: Linear span

Find $W=\operatorname{Sp}\{(1,1,1),(1,2,3),(3,5,7)\}$

- a vector $(a, b, c) \in W$ means it can be written as a lc of the three spanning vectors given:

$$
(a, b, c)=x(1,1,1)+y(1,2,3)+z(3,5,7)
$$

- we have a system of equations

$$
\begin{aligned}
& x+y+3 z=a \quad \text { which } \quad x+y+3 z=a \\
& x+2 y+5 z=b \quad \text { reduces to } \quad y+2 z=b-a \\
& x+3 y+7 z=c \quad 0=a-2 b+c
\end{aligned}
$$

- there is no solution unless $a-2 b+c=0$ in which case

$$
z=k \text { (arbitrary), } y=b-a-2 k, x=2 a-b-k
$$

- the condition $a-2 b+c=0$ implies only vectors of the form $(a, b, 2 b-a)=a(1,0,-1)+b(0,1,2)$ are in W
- this shows that W is also spanned by just two vectors: $W=\operatorname{Sp}\{(1,0,-1),(0,1,2)\}$

Linear independence

- any vector $w \in \operatorname{Sp}\left(u_{1}, u_{2}, \ldots, u_{r}\right)$ can be expressed as a lc $w=k_{1} u_{1}+k_{2} u_{2}+\ldots+k_{r} u_{r}$ for some scalars k_{i}
- the zero vector can certainly always be expressed this way with all of the $k_{i}=0$, but...
- ... if there is some non-zero lc which gives the zero vector then the set $\left\{u_{1}, u_{2}, \ldots u_{r}\right\}$ is called linearly dependent
- equivalently $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{r}}\right\}$ is a linearly independent set of vectors if $k_{1} u_{1}+k_{2} u_{2}+\ldots+k_{r} u_{r}=0$ implies all the $k_{i}=0$

Simple examples: Linear independence

- $\{0\}$ is always linearly dependent [why?]
- any set which includes the zero vector is linearly dependent
- any set $\{v\}$ with one single vector $v \neq 0$ is linearly independent [why?]
- a set of two non-zero vectors $\{u, v\}$ is linearly dependent if and only if $u=k v$, i.e. one is a scalar multiple of the other
- with $\mathrm{e}_{\mathrm{i}}=(0, \ldots, 0,1,0, \ldots, 0)$, i.e. zero everywhere except for a 1 in the ith position, the set $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots\right.$, $\left.e_{n}\right\}$ is linearly independent in R^{n}

Simple examples: Linear independence

- the set $\left\{1, t, t^{2}, \ldots ., t^{n}\right\}$ is linearly independent in P_{n}
- in $C(-\infty, \infty)$ the set $\{1, x, \cos x\}$ is linearly independent
- in $C(-\infty, \infty)$ the set $\left\{1, x, \cos ^{2} x, \sin ^{2} x\right\}$ is linearly dependent
- because $1-\cos ^{2} x-\sin ^{2} x=0$ (identically zero) is a nonzero lc of the vectors that adds to the zero function
- in the binary vs on $\{1,2,3,4\}$ the set $\{123,124,34\}$ is linearly dependent
- $123+124+34=\varnothing$ is a non-zero Ic of vectors giving the zero vector

Connection between linear dependence and span

- a set $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is linearly dependent if and only if at least one u_{i} is in the span of the other $r-1$ vectors
$-\quad$ dependency implies there is a Ic $k_{1} u_{1}+k_{2} u_{2}+\ldots+k_{r} u_{r}=0$ and at least one $\mathrm{k}_{\mathrm{i}} \neq 0$
- so we can solve for $u_{i}=-\left(k_{1} / k_{i}\right) u_{1}-\left(k_{2} / k_{i}\right) u_{2}-\ldots-\left(k_{r} / k_{i}\right) u_{r}$ (with the ith rhs term omitted)
- this shows that u_{i} is a non-zero Ic of the other $r-1$ vectors, i.e. $u_{i} \in \operatorname{Sp}\left\{u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{r}\right\}$
- to prove the converse suppose that one vector is in the Sp of the other $\mathrm{r}-1$ vectors (re-number the list so it's u_{1})
- we can write say $u_{1}=c_{2} u_{2}+c_{3} u_{3}+\ldots+c_{r} u_{r}$ with not all $c_{i}=0$
- re-arranging gives a non-zero Ic $u_{1}-c_{2} u_{2}-c_{3} u_{3}-\ldots-c_{r} u_{r}=0$ so the vectors are linearly dependent

Linear dependence depends on the scalars

- consider the vectors $u=(1+i, 2 i) \& v=(1,1+i) \in C^{2}$
- u\&v are linearly dependent over complex scalars:
- assume $u=k v$ and solve for k
- second coordinate: $2 \mathrm{i}=\mathrm{k}(1+\mathrm{i})$ so $\mathrm{k}=2 \mathrm{i} /(1+\mathrm{i})=1+\mathrm{i}$
- this k also satisfies the first coordinate in $u=k v$ since $1+i=k 1=1+i$
- BUT u\&v are linearly independent over the real scalars:
- ...because $u=k v$ implies $k=1+i \in C$ so u is not a real scalar multiple of v

Checking linear independence

- are the vectors $\{u, v, w\}$ where $u=(1,-2,1), v=(2,1,-1)$, $w=(7,-4,1)$ linearly dependent or independent?
- set $(0,0,0)=x u+y v+z w$ and solve for x, y, z
- this is $x+2 y+7 z=0$

$$
\begin{aligned}
-2 x+y-4 z & =0 \\
x-y+z & =0
\end{aligned}
$$

- before reducing the system let's streamline the work by using a matrix of coefficients

$$
\left[\begin{array}{rrr}
1 & 2 & 7 \\
-2 & 1 & -4 \\
1 & -1 & 1
\end{array}\right]
$$

- note this is just the matrix with the $[\mathrm{u}|\mathrm{v}| \mathrm{w}]$ as columns

Checking linear independence

- so to check linear independence you can write the given vectors as columns of a matrix and row-reduce it:
$\left[\begin{array}{rrr}1 & 2 & 7 \\ -2 & 1 & -4 \\ 1 & -1 & 1\end{array}\right] \sim\left[\begin{array}{rrr}1 & 2 & 7 \\ 0 & 5 & 10 \\ 0 & -3 & -6\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$
- this procedure is like reducing a system of equations
- in this example there is a non-zero solution (in fact an infinite number of them) and so the vectors are linearly dependent
- if we had got only the zero solution we would conclude that the vectors are linearly independent because only the zero lc gives the zero vector

Row and column space of a matrix

- let A be an $m \times n$ matrix
- the rows of A can be considered as vectors R_{1}, R_{2}, $\ldots, R_{m} \in R^{n}$
- the subspace of R^{n} spanned by the rows of A is called the row space of A
- the columns of A can be considered as vectors C_{1}, $\mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}} \in \mathrm{R}^{\mathrm{m}}$
- the subspace of R^{m} spanned by the columns of A is called the column space of A

Row equivalent matrices

- suppose B is obtained from A by a sequence of the following operations:

1. interchance two rows R_{i} and R_{j}
2. replace a row R_{i} by a scalar multiple $k R_{i}$
3. replace a row R_{i} by $R_{i}+R_{j}$

- these are called elementary row operations on A
- we write $B \sim A$
- $\quad B$ is said to be row equivalent to A

Row equivalent matrices

- elementary row operations can be viewed as operations on vectors in R^{n} (rows of A):
- interchange vectors R_{i} and R_{j}
- multiply a vector R_{i} by a scalar k
- replace a vector R_{i} by the sum $R_{i}+R_{j}$
- these operations do not affect the space $\operatorname{Sp}\left\{R_{1}, R_{2}\right.$, ..., $\left.R_{n}\right\}$ spanned by the rows
- the order of the spanning vectors is irrelevant
- vectors are replaced by linear combinations with other vectors
- no vectors are eliminated
- row equivalent matrices have identical row spaces

Using row operations to check linear dependence

- this result should be considered along with the technique described on slides 49\&50
- we can check linear independence by
- arranging the vectors as the rows of a matrix
- performing row operations until the matrix is in echelon form
- if there are less rows than the number of vectors then the original vectors are linearly dependent
- two questions:
- what is echelon form?
- why did we use columns before [slide 49]?

Echelon matrix

- we'll defer the answer to the second question
- the leading non-zero entry in a row is called the pivot entry of the row
- an echelon matrix is in the following form:
- all zero rows are at the bottom of the matrix
- the pivot entry in a row is in a column to the right of the pivot entry in the preceding row
- the rows of an echelon matrix are linearly independent [why?]

Basis of a vector space

- let $V=\operatorname{Sp}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$
- if w is any vector in V then $\left\{w, u_{1}, u_{2}, \ldots u_{r}\right\}$ is certainly linearly dependent
- the spanning set itself $\left\{u_{1}, u_{2}, \ldots u_{r}\right\}$ may or may not be linearly dependent, but if it's linearly dependent....
- ...choose $a u_{i}$ which is a lc of the other $r-1$ vectors [slide 47]
- then V is also spanned by just those $\mathrm{r}-1$ vectors $\left\{u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{r}\right\}$
- continuing to 'cast out' dependent vectors, we eventually arrive at a linearly independent set that still spans V
- this is called a basis of V (the plural is bases)

Basis of a vector space

- a spanning set $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ for a vs V is a basis if:
- it is linearly independent, OR equivalently
- the expression of any vector in terms of basis vectors is unique: $\quad u=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}$
- all bases $\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ for V have the same number of vectors n
- not obvious - see proof 4.36 text
- n is called the dimension of V
- V is n-dimensional
- write $\operatorname{dim} V=n$
- some vector spaces may be infinite dimensional (e.g. function spaces, polynomial space P)
- think of a basis as a maximal linearly independent set

Examples: standard bases

- the standard basis in R^{n} is the set of vectors $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ defined on slide 45
- R^{n} is n-dimensional
_ in R^{3} these are written $i=(1,0,0), j=(0,1,0), k=(0,0,1)$
- in P_{n} the mononomial basis is $\left\{1, \mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}, \ldots, \mathrm{t}^{\mathrm{n}}\right\}$
- $\quad \operatorname{dim}\left(P_{n}\right)=n+1$
- the standard basis for the space of $m \times n$ matrices $M_{m, n}$ consists of the set of matrices $\left\{\mathrm{E}_{\mathrm{ij}}\right\}$ in which the ijth entry is
1 and all other entries are zero
- $\operatorname{dim}\left(\mathrm{M}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{mn}$
- the binary vs on the set $\{1,2, \ldots, n\}$ has a basis $\{\{1\},\{2\}, \ldots\{n\}\}$
- this vs is n-dimensional

Some useful results about vs bases

- if V is an n -dimensional vs then
- any $n+1$ vectors in V must be linearly dependent
- any set of n linearly independent vectors is a basis of V
- any spanning set with n vectors is a basis of V
- examples
- any four vectors in R^{3} must be dependent
- the vectors $\{1,1,1),(1,2,3),(2,-1,1)\}$ are linearly independent [check as per method on slide 54] so they are a basis of R^{3}.....

Example: basis of a vector space

- ...show the set of vectors $S=\{(1,1,1),(1,2,3),(2,-1,1)\}$ is a basis for R^{3}
- three vectors in R^{3} are a basis if and only if they are linearly independent
- write as rows of a matrix and reduce to echelon form:

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & 3 \\
2 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & -3 & -1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

- three independent rows in the echelon matrix so the vectors are independent
- $\quad S$ is a basis for R^{3}

Example: basis of a vector space

- check if the set of vectors $S=\{(1,1,2),(1,2,5),(5,3,4)\}$ is a basis for R^{3}
- three vectors in R^{3} are a basis if and only if they are linearly independent
- write as rows of a matrix and reduce to echelon form:

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 5 \\
5 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & -2 & -6
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

- only two independent rows in the echelon matrix so the original vectors are linearly dependent
- $\quad \mathrm{S}$ is NOT a basis for R^{3}

Bases and subspaces

- any spanning set S of a finite dimensional vs W contains a basis B obtained from S by deleting any vector that is a linear combination of the preceding vectors in S
- any set $S=\left\{u_{1}, \ldots, u_{r}\right\}$ of linearly independent vectors in a finite dimensional vs V can be extended to a basis B of V

Unit I - Vector spaces

Subspaces of R^{n}

- a subspace $W<R^{3}$ can have dimension no more than 3
- the (geometric) possibilities are:
- point - the origin $(\operatorname{dim} W=0)$
- line through the origin $(\operatorname{dim} W=1)$
$-\quad$ plane through the origin $(\operatorname{dim} W=2)$
- all of $R^{3}(\operatorname{dim} W=3)$
- a subspace of R^{n} can have dimension no more than n
- the hyperplane we defined for R^{n} [slide 21] is a ss of dimension n -1

Example: bases and subspaces

- let $W=\operatorname{Sp}\{(1,-2,5,-3),(2,3,1,-4),(3,8,-3,-5)\}<R^{4}$
- find a basis for W and the dimension of W, and extend this basis to a basis for all of R^{4}
- write the given vectors as rows of a matrix and reduce to echelon form:
$\left[\begin{array}{rrrr}1 & -2 & 5 & -3 \\ 2 & 3 & 1 & -4 \\ 3 & 8 & -3 & -5\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -2 & 5 & -3 \\ 0 & 7 & -9 & 2 \\ 0 & 14 & -18 & 4\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -2 & 5 & -3 \\ 0 & 7 & -9 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
- the non-zero rows of the echelon matrix form a basis of the row space of the matrix, i.e. W
- so $\operatorname{dim}(W)=2$ with basis $\{(1,-2,5,-3),(0,7,-9,2)\} \ldots$

...Example: bases and subspaces

- to extend this to a basis for R^{4} requires four linearly independent vectors including the two found above
- the simplest way to do this is to write an echelon matrix

$$
\left[\begin{array}{rrrr}
1 & -2 & 5 & -3 \\
0 & 7 & -9 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- the row vectors in this are linearly independent (as are the rows of ANY echelon matrix)
- the required basis (obviously not unique) for R^{4} is therefore $\{(1,-2,5,-3),(0,7,-9,2),(0,0,1,0),(0,0,0,1)\}$

Coordinates

- let V be a finite dimensional vs over F
- choose an ordered basis $B=\left\{u_{1}, \ldots, u_{n}\right\}$
- let $u \in V$ be expressed as $u=a_{1} u_{1}+\ldots+a_{n} u_{n}$ in terms of the selected basis
- the scalars $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ are called the coordinates of u with respect to the basis B
- this defines an n-tuple $\left[u_{B}=\left[a_{1}, a_{2}, \ldots, a_{n}\right] \in F^{n}\right.$ called the coordinate vector of u with respect to B
- choose a different basis $B^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$ and express u in terms of $B^{\prime}: u=b_{1} v_{1}+\ldots+b_{n} v_{n}$
- the vector u is still the same but its coordinate vector $[u]_{B^{\prime}}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ is now different

Coordinates of vectors in R^{n}

- the way vectors in R^{n} are written as n -tuples implicitly assumes a coordinate representation with respect to the standard basis S
- with respect to S a vector $v=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ has coordinates simply a_{1}, \ldots, a_{n}, i.e. $[v]_{S}=\left[a_{1}, \ldots, a_{n}\right]$
- vectors in R^{n} can be represented with respect to other bases as convenient
- this is called a change of coordinates
- useful in dynamics for instance when we change frame of reference in R^{3}

Example: changing coordinates

- find the coordinates of the vector $v=(2,3,4)$ with respect to the basis $B=\{(1,1,1),(1,1,0),(1,0,0)\}$ of R^{3}
- write $(2,3,4)=x(1,1,1)+y(1,1,0)+z(1,0,0)$
- this gives the system of equations $x+y+z=2$

$$
x+y=3
$$

$$
x=4
$$

- solution is $x=4, y=-1, z=-1$
- so $(2,3,4)=4(1,1,1)-(1,1,0)-(1,0,0)$
- $[v]_{B}=[4,-1,-1]_{B}$ are the new coordinates of $(2,3,4)$ with respect to B
- this simple example should illustrate the concepts

Example: coordinates in polynomial space

- find a basis for $\mathrm{W}=\operatorname{Sp}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}<\mathrm{P}_{3}$ where

$$
\begin{aligned}
& v_{1}=t^{3}-2 t^{2}+4 t+1 \\
& v_{2}=2 t^{3}-3 t^{2}+9 t+1 \\
& v_{3}=t^{3}+6 t-5 \\
& v_{4}=2 t^{3}-5 t^{2}+7 t+5
\end{aligned}
$$

- the coordinates of these polynomials with respect to the monomial basis $\left\{t^{3}, t^{2}, t, 1\right\}$ are
$\left[\mathrm{v}_{1}\right]=(1,-2,4,1)$
$\left[\mathrm{V}_{2}\right]=(2,-3,9,1)$
$\left[\mathrm{V}_{3}\right]=(1,0,6,-5)$
$\left[\mathrm{V}_{4}\right]=(2,-5,7,5) \quad .$.

...Example: coordinates

- we can check the original polynomials by checking the coordinate vectors in R^{4}
- write them as rows of a matrix and reduce to echelon form
$\left[\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & -3 & 9 & -1 \\ 1 & 0 & 6 & -5 \\ 2 & -5 & 7 & 5\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 0 & 1 & 1 & -3 \\ 0 & 2 & 2 & -6 \\ 0 & -1 & -1 & 3\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
- the non-zero rows in the echelon matrix form a basis for the row space, i.e. the space of coordinate vectors, so...
- ...the corresponding vectors $\left\{t^{3}-2 t^{2}+4 t+1, t^{2}+t-3\right\}$ are a basis for W and $\operatorname{dim}(\mathrm{W})=2$

Isomorphism

- there is a one:one correspondence between vectors in an n-dimensional vs V over F and vectors in F^{n}
- associate a vector v with its coordinates []$_{B}$ with respect to some basis $B=\left\{u_{1}, \ldots, u_{n}\right\}$ of V
- this correspondence also preserves the vs operations
- let $v=a_{1} u_{1}+\ldots+a_{n} u_{n}$ and $w=b_{1} u_{1}+\ldots+b_{n} u_{n}$
$-\quad[v]+[w]=\left[a_{1}, \ldots, a_{n}\right]+\left[b_{1}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right]=[v+w]$
- $k[v]=k\left[a_{1}, \ldots, a_{n}\right]=\left[k a_{1}, \ldots, k a_{n}\right]=[k v]$
- $\quad \mathrm{V}$ and F^{n} are called isomorphic, i.e. 'the same'
- we write $V \cong F^{n}$
- we can solve problems in other vs's by using vectors in R^{n} for the calculations [e.g. the previous example]

Basis finding: row space algorithm

- to find a basis for the space W spanned by a given set of vectors we can:
- write them as the rows of a matrix R
- $\quad W$ is the row space of R
- row reduce the matrix R to echelon form
- select the non-zero rows of the echelon matrix
- these span the row space of R [linear combinations of rows of R] and are linearly independent [echelon form]
- so they give the required basis
- the dimension of the row space of a matrix A is called the rank of A

Basis finding: casting out using column vectors

- an alternative method to find a basis for the space W spanned by a given set of vectors:
_ write them as the columns of a matrix C
- this represents the system of equations obtained when writing an arbitrary vector as a Ic of the given ones [see slides 42\&43]
- row reduce [i.e. using row operations] matrix C to echelon form
- columns in the echelon matrix that don't have pivots correspond to arbitrary coefficients in the Ic
- the corresponding vectors in C can therefore be expressed in terms of the vectors that do match columns with pivots
- so cast all the dependent vectors out and retain only the vectors corresponding to columns with pivots to give the basis for W
- is this consistent with the row space algorithm??

Example: basis finding (casting out algorithm)

- repeat example slide 64 using the casting out algorithm
- write the given vectors as the columns of a matrix C and row reduce to echelon form:

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
-2 & 3 & 8 \\
5 & 1 & -3 \\
-3 & -4 & -5
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 7 & 14 \\
0 & 9 & 18 \\
0 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- recall this is motivated by writing an arbitrary vector ($a, b, c, d) \in R^{4}$ as:
$(a, b, c, d)=x(1,-2,5,-3)+y(2,3,1,-4)+z(3,8,-3,-5)$
and solving for the unknown coefficients in the Ic...

...Example: basis finding (casting out algorithm)

- any vector $\mathrm{v} \in \mathrm{W}$ must satisfy the restrictions on $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ that come from the zero rows in the echelon matrix
- the non-zero rows in the echelon matrix indicate that z is arbitrary in the lc that expresses v
- so only the first two vectors are necessary in this ic
- we conclude that these are a basis for W :
$\{(1,-2,5,-3),(2,3,1,-4)\}$
- in particular W is two dimensional as found previously
- in this example:
- rank of $R=2$
- rank of $\mathrm{C}=2$
- there is no discrepancy between the methods - they each find a valid basis for W

Casting out algorithm

- another way of thinking of the casting out algorithm...
- suppose $A \sim M$ echelon form
- the columns in M with pivot entries are a basis for the column space M
- the corresponding columns in A are a basis for the column space of A [why?]
- examine a simple example to see why this works
- more on this result when we study solution spaces of linear systems...

An IMPORTANT result about rank

- for any matrix $A: \operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$
- when we use the row space algorithm vs the casting out algorithm the matrices are transposes [C=R ${ }^{\top}$]
- so we'll always get the same number of independent rows in either of the reduced echelon forms
- i.e. the found bases will have the same number of vectors....as they should
- we can also conclude for any matrix A that the row and column space have the same dimension
- proving these is more involved than difficult - see text

Example: rank of a matrix

- find the ranks of the following matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrr}
1 & 3 & 1 & -2 & -3 \\
1 & 4 & 3 & -1 & -4 \\
2 & 3 & -4 & -7 & -3 \\
3 & 8 & 1 & -7 & -8
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 2 & -3 \\
2 & 1 & 0 \\
-2 & -1 & 3 \\
-1 & 4 & -2
\end{array}\right] \quad C=\left[\begin{array}{rrr}
1 & 3 \\
0 & -2 \\
5 & -1 \\
-2 & 3
\end{array}\right] \\
& A \sim\left[\begin{array}{rrrrr}
1 & 3 & 1 & -2 & -3 \\
0 & 1 & 2 & 1 & -1 \\
0 & -3 & -6 & -3 & 3 \\
0 & -1 & -2 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 3 & 1 & -2 & -3 \\
0 & 1 & 2 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- an echelon matrix with two non-zero rows
- $\quad \operatorname{sog} \operatorname{rank}(A)=2 \ldots$.

....Example: rank of a matrix

- row reduce B^{\top} instead of B [less work involved]:

$$
B^{T} \sim\left[\begin{array}{rrrr}
1 & 2 & -2 & -1 \\
0 & -3 & 3 & 6 \\
0 & 6 & -3 & -5
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -2 & -1 \\
0 & -3 & 3 & 6 \\
0 & 0 & 3 & 7
\end{array}\right]
$$

- an echelon matrix with three non-zero rows
- $\quad \operatorname{sorank}(B)=\operatorname{rank}\left(B^{\top}\right)=3$
- as for the last matrix....rank $\left(\mathrm{C}^{\top}\right)=2$ since the rows of C^{\top} are linearly independent [i.e. not multiples of each other]
- therefore $\operatorname{rank}(C)=\operatorname{rank}\left(\mathrm{C}^{\top}\right)=2$
- use properties of rank to simplify work as in this example

Example: basis finding again

Find bases for the row space and column space of A

- first reduce A to echelon form:
$A=\left[\begin{array}{llll}1 & 1 & 3 & 3 \\ 0 & 2 & 2 & 4 \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 3\end{array}\right]$

$$
A \sim\left[\begin{array}{llll}
1 & 1 & 3 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=R
$$

- the two non-zero rows of R are a basis for the row space of A: $\{(1,1,3,3),(0,1,1,2)\}$
- the two columns of R with pivot entries are a basis for the column space of R so
- the corresponding columns of A are a basis for the column space of A : $\left\{(1,0,1,1)^{\top},(1,2,0,1)^{\top}\right\}$

....Example: basis finding again

Now find bases for the row (column) space of A consisting only of rows (columns) of A

- previous answer is ok for the column space
- for the row space we need to be clever
- use A^{\top} and the casting out algorithm:

$$
A^{T}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 2 & 0 & 1 \\
3 & 2 & 2 & 3 \\
3 & 4 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=R^{\prime}
$$

- columns $1 \& 2$ of A^{\top} are a basis for the column space of A^{\top} and so
- ...rows $1 \& 2$ of A are a basis for the row space of $A:\{(1,1,3,3),(0,2,2,4)\}$
- compare this answer to the one on the previous slide

A question for understanding

- two row equivalent matrices $\mathrm{A} \sim \mathrm{B}$ are related by a sequence of row operations
- so the rows of B are I.c. of the rows of A, consequently...
- A and B have the same row space
- what about column space?
- do row equivalent matrices A and B have the same column space?

ANSWER

Sums of subspaces

- let V be a v.s. and take two subsets $\mathrm{U}, \mathrm{W} \subset \mathrm{V}$
- the sum $U+W=\{u+w \mid u \in U, w \in W\}$ consists of all v.s. sums of vectors in the two subsets
- now if U, W are subspaces of V then $\mathrm{U}+\mathrm{W}$ is also a subspace [closure is easily checked]
- in fact $U+W=\operatorname{span}\{U, W\}$
- also the intersection of two subspaces $\mathrm{U} \cap \mathrm{W}$ is a subspace of V
- if U, W are finite dimensional subspaces of V then $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)$
- this result is very IMPORTANT

Example: Sums of subspaces

- $U=\left\{(a, b, 0) \in R^{3}\right\}$ is the $x y$-plane and $W=\left\{(0, c, d) \in R^{3}\right\}$ is the yz-plane
- the sum $\mathrm{U}+\mathrm{W}=\mathrm{R}^{3}$
- the intersection $U \cap W=\left\{(0, c, 0) \in R^{3}\right\}$ is the y-axis
- $\quad \operatorname{dim}(\mathrm{U}+\mathrm{W})=\operatorname{dim} \mathrm{U}+\operatorname{dim} \mathrm{W}-\operatorname{dim}(\mathrm{U} \cap \mathrm{W})=2+2-1=3$ as it should
- a vector (a, b, c) $\in R^{3}$ can be written as a sum of vectors in U and W , but not uniquely, e.g.
$(2,16,-12)=(2,4,0)+(0,12,-12)$

$$
=(2,-8,0)+(0,24,-12) \text { etc }
$$

Direct sums

- $\quad \mathrm{V}$ is the direct sum of the subspaces U and W if

$$
V=U+W \quad \underline{A N D} \quad U \cap W=\{0\}
$$

- we write $\mathrm{V}=\mathrm{U} \oplus \mathrm{W}$ for the direct sum
- the importance of direct sum:
$\mathrm{V}=\mathrm{U} \oplus \mathrm{W}$ if and only if any vector $\mathrm{v} \in \mathrm{V}$ can be written uniquely as a sum $v=u+w, u \in U, w \in W$
- if $\mathrm{V}=\mathrm{U} \oplus \mathrm{W}$ then $\operatorname{dim}(\mathrm{U} \cap \mathrm{W})=0$ (second condition above) so in this case:
$\operatorname{dim}(\mathrm{U} \oplus \mathrm{W})=\operatorname{dim} \mathrm{U}+\operatorname{dim} \mathrm{W}$

Example: Direct sums of subspaces

- $U=\left\{(a, b, 0) \in R^{3}\right\}$ is the $x y$-plane and $W=\left\{(0,0, d) \in R^{3}\right\}$ is the z-axis
- then the direct sum $\mathrm{U} \oplus \mathrm{W}=\mathrm{R}^{3}$
- $\quad \operatorname{dim}(\mathrm{U}+\mathrm{W})=\operatorname{dim} \mathrm{U}+\operatorname{dim} \mathrm{W}=2+1=3$ as it should
- a vector (a,b,c) $\in R^{3}$ can be written uniquely as a sum of vectors in U and W , e.g.
$(2,16,-12)=(2,16,0)+(0,0,-12)$
and no other sum of these kinds of vectors will work

Example: sums of subspaces

- compare this to text problem 4.54, but note typo in a) conclusion
- $U=\operatorname{Sp}\{(1,4,0,-1),(2,-3,1,1)\}$ and $W=\operatorname{Sp}\{(0,1,1,1),(4,5,1,-1)\}$
- find bases for U+W and U $\cap W$
- $\quad \mathrm{U}+\mathrm{W}$ is the span of the four vectors, so write as rows and find a basis for the row space:

$$
\left[\begin{array}{rrrr}
1 & 4 & 0 & -1 \\
2 & -3 & 1 & 1 \\
0 & 1 & 1 & 1 \\
4 & 5 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 4 & 0 & -1 \\
0 & 11 & -1 & -3 \\
0 & 1 & 1 & 1 \\
0 & 11 & -1 & -3
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 4 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 6 & 7 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- the first three rows of the echelon matrix
$\{(1,4,0,-1),(0,1,1,1),(0,0,6,7)\}$ are a basis for U+W
- now, to find U $\cap W$, characterize vectors in both U and W
- assume $(x, y, z, w) \in U$ first, so $(x, y, z, w)=a(1,4,0,-1)+b(2,-3,1,1) \ldots$

...Example: sums of subspaces

- then
$\left[\begin{array}{rrr}1 & 2 & x \\ 4 & -3 & y \\ 0 & 1 & z \\ -1 & 1 & w\end{array}\right] \sim\left[\begin{array}{rrr}1 & 2 & x \\ 0 & 11 & 4 x-y \\ 0 & 1 & z \\ 0 & 3 & x+w\end{array}\right] \sim\left[\begin{array}{rrr}1 & 2 & x \\ 0 & 1 & z \\ 0 & 0 & 11 z-4 x+y \\ 0 & 0 & 3 z-x-w\end{array}\right]$
- so we have consistency conditions on x, y, z, w as per the last two rows
- now do the same with $(x, y, z, w) \in W$ so that
$(x, y, z, w)=c(0,1,1,1)+d(4,5,1,-1)$ and reduce to echelon form

$$
\left[\begin{array}{rrr}
0 & 4 & x \\
1 & 5 & y \\
1 & 1 & z \\
1 & -1 & w
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & z \\
0 & 4 & x \\
0 & 4 & y-z \\
0 & 6 & y-w
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & z \\
0 & 4 & x \\
0 & 0 & x-y+z \\
0 & 0 & 3 x-2 y+2 w
\end{array}\right]
$$

...Example: sums of subspaces

- again consistency for the last two rows provides conditions on the vector if $(x, y, z, w) \in W$
- arranging both sets of consistency conditions into one system:

$$
\begin{array}{r}
x-y+z=0 \\
3 x-2 y+2 w=0 \\
-4 x+y+11 z=0 \\
-x+3 z-w=0
\end{array}
$$

- solve this by reducing the matrix of coefficients
$\left[\begin{array}{rrrr}1 & -1 & 1 & 0 \\ 3 & -2 & 0 & 2 \\ -4 & 1 & 11 & 0 \\ -1 & 0 & 3 & -1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -1 & 1 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 1 & -5 & 0 \\ 0 & -1 & 4 & -1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -1 & 1 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -1 & 1 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
- w is arbitrary, so pick say $w=-1$, then $z=1, y=5, x=4$
- the required basis for U $\cap W$ is then $\{(4,5,1,-1)\}$

Vector spaces: Roadmap

- definition of a vector space
- axioms
- elementary results
- standard examples
- Euclidean space R^{n} and C^{n} [NB review of complex arithmetic]
- matrix space
- function spaces
- polynomial spaces
- binary vector space
- subspaces
- definition
- standard examples
- checking by closure

Vector spaces: Roadmap

- linear combinations and span
- matrix spaces
- row space and column space of a matrix
- elementary row operations
- row equivalent matrices
- echelon form
- linear independence
- basic results
- how to check it for a set of vectors

