# Linear Algebra, Spring 2005 

Solutions

May 4, 2005

## Problem 6.47 (d)

Since $E$ is the usual basis, the change-of-basis matrix $P$ from $E$ to $S$, can be written directly from $S$ by writing the basis vectors in $S$ as its columns.
$P=\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]$
Two methods are given to find the change-of-basis matrix $Q$ from $S$ back to $E$ Method 1. Directly from $P$, as $Q=P^{-1}$, find $P^{-1}$ using matrix inversion formula:
$Q=P^{-1}=\left[\begin{array}{cc}-\frac{5}{2} & 2 \\ \frac{3}{2} & -1\end{array}\right]$
Method 2. Use the definition of the change-of-basis matrix. i.e. express each vector in $E$ as a linear combination of the vectors in $S$. Let $v=(a, b)$ be any arbitrary vector in $E$, then calculate the coordinates of $v$ with respect to $S$ as:
$\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right] x+\left[\begin{array}{l}4 \\ 5\end{array}\right] y \Longrightarrow\left\{\begin{array}{l}2 x+4 y=a \\ 3 x+5 y=b\end{array} \Longrightarrow\left\{\begin{array}{c}x=-\frac{5}{2} a+2 b \\ y=\frac{3}{2} a-b\end{array}\right.\right.$
Hence, $[v]_{S}=\left[\begin{array}{c}-\frac{5}{2} a+2 b \\ \frac{3}{2} a-b\end{array}\right]$

Use above formula to get the coordinates of $e_{i}$
$e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \Longrightarrow\left[\begin{array}{c}-\frac{5}{2} \\ \frac{3}{2}\end{array}\right] ; \quad e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \Longrightarrow\left[\begin{array}{c}2 \\ -1\end{array}\right]$
Write the coordinates of $e_{i}$ as columns of change-of-basis matrix $Q$
$Q=\left[\begin{array}{cc}-\frac{5}{2} & 2 \\ \frac{3}{2} & -1\end{array}\right]$

## Problem 6.48

(a) Transition matrix $P$
$\left[\begin{array}{l}1 \\ 3\end{array}\right]=x\left[\begin{array}{l}1 \\ 2\end{array}\right]+y\left[\begin{array}{l}2 \\ 3\end{array}\right] \Longrightarrow\left\{\begin{array}{l}x+2 y=1 \\ 2 x+3 y=3\end{array} \Longrightarrow\left\{\begin{array}{c}x=3 \\ y=-1\end{array}\right.\right.$
$\left[\begin{array}{l}1 \\ 4\end{array}\right]=x\left[\begin{array}{l}1 \\ 2\end{array}\right]+y\left[\begin{array}{l}2 \\ 3\end{array}\right] \Longrightarrow\left\{\begin{array}{c}x+2 y=1 \\ 2 x+3 y=4\end{array} \Longrightarrow\left\{\begin{array}{c}x=5 \\ y=-2\end{array}\right.\right.$
Hence, $P=\left[\begin{array}{cc}3 & 5 \\ -1 & -2\end{array}\right]$
(b) Transition matrix $Q$
$Q=P^{-1}=\left[\begin{array}{cc}2 & 5 \\ -1 & -3\end{array}\right]$
It can also be obtained using method as in part a.

## Problem 6.49

Part (a)
Using simple geometry, find the coordinates of the new unit vectors when the original axis is rotated by $30^{\circ}$ counterclockwise

Coordinates of $e_{i}{ }^{\prime}$ :
$e_{1}{ }^{\prime}=(\cos 30, \sin 30)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$e_{2}{ }^{\prime}=(-\cos 60, \sin 60)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

## Part (b)

The change-of-matrix $P$ can simply be written as the columns of the two unit vectors $e_{i}^{\prime}$
$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$

## Part (c)

Any point $X=[x, y]$ will have new coordinates $X^{\prime}=P^{T} X^{T}$
$A^{\prime}=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}2.37 \\ 2.1\end{array}\right]$
$B^{\prime}=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]\left[\begin{array}{c}2 \\ -5\end{array}\right]=\left[\begin{array}{c}-0.77 \\ -5.33\end{array}\right]$
$C^{\prime}=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}\frac{\sqrt{3}}{2} a+\frac{1}{2} b \\ -\frac{1}{2} a+\frac{\sqrt{3}}{2} b\end{array}\right]$

## Problem 6.50

## Part (a)

Since $E$ is the usual basis, the change-of-basis matrix $P$ from $E$ to $S$, can be written directly from $S$ by writing the basis vectors in $S$ as its columns.
$P=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right]$
Use the definition of the change-of-basis matrix. i.e. express each vector in $E$ as a linear combination of the vectors in $S$. Let $v=(a, b, c)$ be any arbitrary vector in $E$, then calculate the coordinates of $v$ with respect to $S$ as:

$$
\begin{aligned}
& {\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] y+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] z \Longrightarrow\left\{\begin{array}{c}
x=a \\
y=a-b+c \\
z=-2 a+2 b-c
\end{array}\right.} \\
& {[v]_{S}=\left[\begin{array}{c}
a \\
a-b+c \\
-2 a+2 b-c
\end{array}\right]}
\end{aligned}
$$

Coordinates of $e_{i}$ :
$e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right] ; e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right] ; e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Rightarrow\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$
Write the coordinates of $e_{i}$ as columns of $Q$
$Q=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -1 & 1 \\ -2 & 2 & -1\end{array}\right]$
$Q$ can also be obtained by taking the inverse of $P$. i.e. $Q=P^{-1}$

## Part (b)

Since $E$ is the usual basis, the change-of-basis matrix $P$ from $E$ to $S$, can be written directly from $S$ by writing the basis vectors in $S$ as its columns.
$P=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$
Use the definition of the change-of-basis matrix. i.e. express each vector in $E$ as a linear combination of the vectors in $S$. Let $v=(a, b, c)$ be any arbitrary vector in $E$, then calculate the coordinates of $v$ with respect to $S$ as:

$$
\begin{aligned}
& {\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] y+\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] z \Longrightarrow\left\{\begin{array}{c}
x=-2 b+c \\
y=2 a+3 b-2 c \\
z=-a-b+c
\end{array}\right.} \\
& {[v]_{S}=\left[\begin{array}{c}
-2 b+c \\
2 a+3 b-2 c \\
-a-b+c
\end{array}\right]}
\end{aligned}
$$

Coordinates of $e_{i}$ :
$e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right] ; e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{c}-2 \\ 3 \\ -1\end{array}\right] ; e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Rightarrow\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
Write the coordinates of $e_{i}$ as columns of $Q$
$Q=\left[\begin{array}{ccc}0 & -2 & 1 \\ 2 & 3 & -2 \\ -1 & -1 & 1\end{array}\right]$
$Q$ can also be obtained by taking the inverse of $P$. i.e. $Q=P^{-1}$

## Part (c)

Since $E$ is the usual basis, the change-of-basis matrix $P$ from $E$ to $S$, can be written directly from $S$ by writing the basis vectors in $S$ as its columns.
$P=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 5 \\ 1 & 4 & 6\end{array}\right]$
Use the definition of the change-of-basis matrix. i.e. express each vector in $E$ as a linear combination of the vectors in $S$. Let $v=(a, b, c)$ be any arbitrary vector in $E$, then calculate the coordinates of $v$ with respect to $S$ as:

$$
\begin{aligned}
& {\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right] y+\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right] z \Longrightarrow\left\{\begin{array}{c}
x=-2 a+2 b-c \\
y=-7 a+4 b-c \\
z=5 a-3 b+c
\end{array}\right.} \\
& {[v]_{S}=\left[\begin{array}{c}
-2 a+2 b-c \\
-7 a+4 b-c \\
5 a-3 b+c
\end{array}\right]}
\end{aligned}
$$

Coordinates of $e_{i}$ :
$e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{c}-2 \\ -7 \\ 5\end{array}\right] ; e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{c}2 \\ 4 \\ -3\end{array}\right] ; e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Rightarrow\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
Write the coordinates of $e_{i}$ as columns of $Q$
$Q=\left[\begin{array}{ccc}-2 & 2 & -1 \\ -7 & 4 & -1 \\ 5 & -3 & 1\end{array}\right]$
$Q$ can also be obtained by taking the inverse of $P$. i.e. $Q=P^{-1}$

## Problem 6.52

## Part a

The matrix $[F]_{E}$ represents $F$ in basis $E$. Write the coefficients of $x$ and $y$ in $F(x, y)$ as rows to get:
$[F]_{E}=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right]$
Transition matrix between $E$ and $S$ is
$P=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$, and $P^{-1}=\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]$
The matrix $A$ representing $F$ relative to the basis $S$ is given as:
$A=[F]_{S}=P^{-1}[F]_{E} P=\left[\begin{array}{cc}-23 & -39 \\ 15 & 26\end{array}\right]$

## Alternate Method

First find the coordinates of an arbitrary vector $(a, b)$ relative to the basis $S$
$\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right] x+\left[\begin{array}{l}2 \\ 3\end{array}\right] y \Longrightarrow\left\{\begin{array}{c}x+2 y=a \\ 2 x+3 y=b\end{array} \Longrightarrow\left\{\begin{array}{c}x=-3 a+2 b \\ y=2 a-b\end{array}\right.\right.$
Hence, $[v]_{S}=\left[\begin{array}{c}-3 a+2 b \\ 2 a-b\end{array}\right]$
Substitute the values of $S=[(1,2),(2,3)]$ in $F$ to get
$F(S)=[F(1,2), F(2,3)]=[(7,-1),(13,0)]$
Using the equation of $(a, b)$ for these two values and arranging them in columns give:

$$
A=\left[\begin{array}{cc}
-23 & -39 \\
15 & 26
\end{array}\right]
$$

## Part b

Transition matrix between $E$ and $S^{\prime}$ is:

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right], \text { so } P^{-1}=\left[\begin{array}{cc}
4 & -1 \\
-3 & 1
\end{array}\right] \\
& B=[F]_{S}^{\prime}=P^{-1}[F]_{E} P=\left[\begin{array}{cc}
35 & 41 \\
-27 & -32
\end{array}\right]
\end{aligned}
$$

## Part c

Same as 6.48 part (a). So, Transition matrix between $S$ and $S^{\prime}$ is:
$P=\left[\begin{array}{cc}3 & 5 \\ -1 & -2\end{array}\right]$

## Part d

Relationship is: $B=P^{-1} A P$

## Problem 6.53

## Part a

Find the coordinates of an arbitrary vector $(a, b)$ relative to basis $S$

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] x+\left[\begin{array}{l}
2 \\
5
\end{array}\right] y \Longrightarrow\left\{\begin{array} { c } 
{ x + 2 y = a } \\
{ 3 x + 5 y = b }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x=-5 a+2 b \\
y=3 a-b
\end{array}\right.\right.
$$

Hence, $[v]_{S}=\left[\begin{array}{c}-5 a+2 b \\ 3 a-b\end{array}\right]$
Using the transition matrix $A$ to get the relative vector coordinates
$A S=\left[\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]=\left[\begin{array}{cc}-2 & -3 \\ 9 & 16\end{array}\right]$
(Note You can do this separately using one vector at a time)
Now using the vector coordinates in the expression for $[v]_{S}$, we get:
$B=\left[\begin{array}{cc}28 & 47 \\ -15 & -25\end{array}\right]$

## Alternate Method

Use $B=P^{-1} A P$ where $P$ is simple change of basis matrix from $E$ to $S$.
$P=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$ and $P^{-1}=\left[\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right]$
$B=\left[\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]=\left[\begin{array}{cc}28 & 47 \\ -15 & -25\end{array}\right]$

## Part b

Find the coordinates of an arbitrary vector $(a, b)$ relative to basis $S$
$\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right] x+\left[\begin{array}{l}2 \\ 4\end{array}\right] y \Longrightarrow\left\{\begin{array}{l}x+2 y=a \\ 3 x+4 y=b\end{array} \Longrightarrow\left\{\begin{array}{l}x=-2 a+b \\ y=\frac{3}{2} a-\frac{1}{2} b\end{array}\right.\right.$
Hence, $[v]_{S}=\left[\begin{array}{c}-2 a+b \\ \frac{3}{2} a-\frac{1}{2} b\end{array}\right]$
Using the transition matrix $A$ to get the relative vector coordinates
$A S=\left[\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}-2 & -2 \\ 9 & 14\end{array}\right]$
(Note: You can do this separately using one vector at a time)
Now using the vector coordinates in the expression for $[v]_{S}$, we get:
$B=\left[\begin{array}{cc}13 & 18 \\ -\frac{15}{2} & -10\end{array}\right]$

## Alternate Method

Use $B=P^{-1} A P$ where $P$ is simple change of basis matrix from $E$ to $S$.
$P=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $P^{-1}=\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$
$B=\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}13 & 18 \\ -\frac{15}{2} & -10\end{array}\right]$

## Problem 6.54 a

$[F]_{E}=\left[\begin{array}{ll}1 & -3 \\ 2 & -4\end{array}\right]$
Transition matrix between $E$ and $S$ is
$P=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right], \quad P^{-1}=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]$
Hence, $[F]_{S}=P^{-1}[F]_{E} P=\left[\begin{array}{cc}43 & 60 \\ -33 & -46\end{array}\right]$

## Problem 6.55

$A=[A]_{E}=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 7 & 4 \\ 1 & 4 & 3\end{array}\right]$
Transition matrix between $E$ and $S$ is
$P=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 3\end{array}\right], \quad P^{-1}=\left[\begin{array}{ccc}1 & 1 & -1 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right]$
$B=P^{-1} A P=\left[\begin{array}{ccc}10 & 8 & 20 \\ 13 & 11 & 28 \\ -5 & -4 & -10\end{array}\right]$

## Problem 6.56

## Part a

$P^{-1}=\left[\begin{array}{ll}1 & -2 \\ 3 & -5\end{array}\right]$
$B=P^{-1} A P=\left[\begin{array}{ll}-34 & 57 \\ -19 & 32\end{array}\right]$
Part c

$$
\begin{aligned}
& \operatorname{det}(A)=1(-3)-1(2)=-3-2=-5 \\
& \operatorname{det}(B)=-34(32)-57(-19)=-1088+1083=-5
\end{aligned}
$$

## Problem 6.59

## Part a

The transition matrix $A$ can be obtained form the $T$ directly.
$A=\left[\begin{array}{cc}3 & 1 \\ -2 & 4\end{array}\right]$
$B$ can be obtained from $P$ if $P$ is known.
$B=P^{-1} A P=\left[\begin{array}{cc}8 & 11 \\ -2 & -1\end{array}\right](P$ is given in part b).
Alternatively,

$$
\left\{\begin{array} { c } 
{ u _ { 1 } + u _ { 2 } = w _ { 1 } } \\
{ 2 u _ { 1 } + 3 u _ { 2 } = w _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
u_{1}=3 w_{1}-w_{2} \\
u_{2}=-2 w_{1}+w_{2}
\end{array}\right.\right.
$$

Now, substitute the value of $u_{i}$ in the equations of $T\left(u_{I}\right)$

$$
\begin{aligned}
T\left(u_{1}\right) & =3 u_{1}-2 u_{2} \\
T\left(3 w_{1}-w_{2}\right) & =3\left(3 w_{1}-w_{2}\right)-2\left(-2 w_{1}+w_{2}\right) \\
3 T\left(w_{1}\right)-T\left(w_{2}\right) & =13 w_{1}-5 w_{2}
\end{aligned}
$$

Similarly,

$$
-2 T\left(w_{1}\right)+T\left(w_{2}\right)=-5 w_{1}+3 w_{2}
$$

Solve for $T\left(w_{1}\right)$ and $T\left(w_{2}\right)$, yield:

$$
\left\{\begin{array}{l}
T\left(w_{1}\right)=8 w_{1}-2 w_{2} \\
T\left(w_{2}\right)=11 w_{1}-w_{2}
\end{array} \Rightarrow B=\left[\begin{array}{cc}
8 & 11 \\
-2 & -1
\end{array}\right]\right.
$$

## Part b

The transition matrix between $S$ and $S^{\prime}$ can satisfy the relationship:
$B=P^{-1} A P$, so it is:
$P=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$

