Linear Algebra, Spring 2005

Solutions

May 4, 2005

Problem 5.56-5.58(a)

See Solutions for assigned problems 7.

Problem 5.76

(a)

Find ker F by setting $F(v)=\mathbf{0}$, where $v=(x, y, z)$
$(x+y+z, 2 x+3 y+5 z, x+3 y+7 z)=\mathbf{0} \Longrightarrow\left\{\begin{array}{l}x+y+z=0 \\ 2 x+3 y+5 z=0 \\ x+3 y+7 z=0\end{array}\right.$
We row-reduce the corresponding matrix of coefficients:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 5 \\
1 & 3 & 7
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 2 & 6
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \sim
$$

The mapping is singular, as seen by the last row of zeros (rank $=2$).
$\left\{\begin{array}{l}x+y+z=0 \\ 2 x+3 y+5 z=0 \\ x+3 y+7 z=0\end{array} \Longleftrightarrow\left\{\begin{array}{c}x+y+z=0 \\ y+3 z=0\end{array}\right.\right.$
z is a free variable. Then $y=-3 z$ and $x=2 z$, hence the solution is $(2 z,-3 z, z)=z(2,-3,1)$. A non-zero vector in the kernel would be, for instance, $(2,-3,1)$.
(b)

Find $\operatorname{ker} G$ by setting $G(v)=0$, where $v=(x, y, z)$
$\left\{\begin{array}{c}x+y \quad=0 \\ x+2 y+2 z=0 \\ y+z=0\end{array}\right.$
We row-reduce the corresponding matrix of coefficients:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 2 \\
0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]
$$

The rank is 3 so the mapping is non-singular.
$\left\{\begin{array}{l}x+y=0 \\ x+2 y+2 z=0 \\ y+z=0\end{array} \Longleftrightarrow\left\{\begin{array}{c}x+y=0 \\ y+2 z=0 \\ -z=0\end{array}\right.\right.$
The only solution is $x=0, y=0, z=0$, hence G is nonsingular For G^{-1} invert the matrix:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 2 \\
0 & 1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
0 & 1 & -2 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right]
$$

Hence, $G^{-1}(a, b, c)=(b-2 c, a-b+2 c,-a+b-c)$
(c)

Find ker H by setting $H(v)=0$, where $v=(x, y)$
$\left\{\begin{array}{l}x+2 y=0 \\ x-y=0 \\ x+y=0\end{array}\right.$
The only solution is $x=0, y=0$, hence H is non-singular. But H is NOT invertible, because $\operatorname{dim} P_{2}(t)=3>\operatorname{dim} R^{2}=2$, i.e. the matrix defining H is not square.

Problem 5.79

(a)
$\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right] \sim\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]$
$\left\{\begin{array}{c}x+2 y=0 \\ 2 x+3 y=0\end{array} \Rightarrow\left\{\begin{array}{c}x+2 y=0 \\ -y=0\end{array}\right.\right.$
The only solution is $x=0, y=0$, hence T is non-singular.
$\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]^{-1}=\left[\begin{array}{rr}-3 & 2 \\ 2 & -1\end{array}\right]$
Hence, $T^{-1}(a, b)=(-3 a+2 b, 2 a-b)$
(b)
$\left[\begin{array}{ll}2 & -3 \\ 3 & -4\end{array}\right] \sim\left[\begin{array}{rr}2 & -3 \\ 0 & 1\end{array}\right]$
$\left\{\begin{array}{l}2 x-3 y=0 \\ 3 x-4 y=0\end{array} \Rightarrow\left\{\begin{array}{c}2 x-3 y=0 \\ y=0\end{array}\right.\right.$
The only solution is $x=0, y=0$, hence T is non-singular.
$\left[\begin{array}{ll}2 & -3 \\ 3 & -4\end{array}\right]^{-1}=\left[\begin{array}{ll}-4 & 3 \\ -3 & 2\end{array}\right]$
Hence, $T^{-1}(a, b)=(-4 a+3 b,-3 a+2 b)$

5.80

(a)

$$
\left\{\begin{array} { r }
{ x - 3 y - 2 z = 0 } \\
{ y - 4 z = 0 } \\
{ z = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=0 \\
y=0 \\
z=0
\end{array}\right.\right.
$$

Hence, T) is nonsingular.

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & -3 & -2 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & 3 & 14 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]} \\
& T^{-1}(a, b, c)=(a+3 b+14 c, b+4 c, c)
\end{aligned}
$$

(b)

$$
\left\{\begin{array} { l }
{ x \quad + z = 0 } \\
{ x - y = 0 } \\
{ y = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=0 \\
y=0 \\
z=0
\end{array}\right.\right.
$$

Hence, $T(x, y, z)$ is nonsingular.

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

$$
T^{-1}(a, b, c)=(b+c, c, a-b-c)
$$

Problem 6.37

$F(x, y)=(4 x+5 y, 2 x-y)$
(a) $A=[F]_{E}=\left[\begin{array}{cc}4 & 5 \\ 2 & -1\end{array}\right]$.
(b) Basis: $u_{1}=(1,4), u_{2}=(2,9)$

Follow the steps on slide 50 (finding a matrix representation):
Step 0.convenience $\left[\begin{array}{l}a \\ b\end{array}\right]=x \cdot u_{1}+y \cdot u_{2}=x \cdot\left[\begin{array}{l}1 \\ 4\end{array}\right]+y \cdot\left[\begin{array}{l}2 \\ 9\end{array}\right]$
Solve for x, y in terms of a, b. We have

$$
\left\{\begin{array}{c}
x=9 a-2 b \\
y=b-4 a
\end{array}\right.
$$

Step 1.
$F\left(u_{1}\right)=F(1,4)=F(4(1)+5(4), 2(1)-1(4))=(24,-2)=220 u_{1}-98 u_{2}$ (the last equality is determined by Step 0$)$.

$$
F\left(u_{2}\right)=F(2,9)=(53,-5)=487 u_{1}-217 u_{2}
$$

Step 2.

$$
B=[F]_{S}=\left[\begin{array}{cc}
220 & 487 \\
-98 & -217
\end{array}\right]
$$

(c) Transition matrix P between E and S is

$$
P=\left[\begin{array}{ll}
1 & 2 \\
4 & 9
\end{array}\right]\left(=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\right) \text {, and } P^{-1}=\left[\begin{array}{cc}
9 & -2 \\
-4 & 1
\end{array}\right]
$$

such a P satisfies $B=P^{-1} A P$.

(d)

For any vector $v=(a, b),[v]_{S}=[9 a-2 b, b-4 a]^{T}($ from Step 0 in part (b))
$F(v)=(4 a+5 b, 2 a-b)$, so we have
$[F(v)]_{S}=[9(4 a+5 b)-2(2 a-b),(2 a-b)-4(4 a+5 b)]^{T}=[32 a+47 b,-14 a-21 b]^{T}$
Note that $[F]_{S}$ is given in part (b) as:
$[F]_{S}=B=\left[\begin{array}{cc}220 & 487 \\ -98 & -217\end{array}\right]$
Hence, we obtain:
$[F]_{S} \cdot[v]_{S}=\left[\begin{array}{cc}220 & 487 \\ -98 & -217\end{array}\right] \cdot\left[\begin{array}{c}9 a-2 b \\ b-4 a\end{array}\right]=\left[\begin{array}{c}32 a+47 b \\ -14 a-21 b\end{array}\right]=[F(v)]_{S}$

Problem6.38

$$
A=[A]_{E}
$$

(a)
we use 6.37(a):
$P=\left[\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right], \quad P^{-1}=\left[\begin{array}{cc}4 & -1 \\ -\frac{3}{2} & \frac{1}{2}\end{array}\right]$
then $B=[A]_{S}=P^{-1} A P=\left[\begin{array}{cc}-6 & -28 \\ 4 & 15\end{array}\right]$
(b)

$$
[v]_{S}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { such that }
$$

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=x \cdot\left[\begin{array}{l}
1 \\
3
\end{array}\right]+y \cdot\left[\begin{array}{l}
2 \\
8
\end{array}\right] \Longrightarrow\left\{\begin{array}{c}
x+2 y=a \\
3 x+8 y=b
\end{array}\right.
$$

Solve for x, y,
$[v]_{S}=\left[\begin{array}{c}4 a-b \\ \frac{3}{2} a+\frac{1}{2} b\end{array}\right]$
$[A(v)]_{S}=[A]_{S}[v]_{S}=\left[\begin{array}{c}18 a-8 b \\ -\frac{13}{2} a+\frac{7}{2} b\end{array}\right]$

Problem 6.39

(a)

We find the image of the standard basis vectors E :
$L(1,0)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
$L(0,1)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
$[L]_{E}=\frac{1}{2}\left[\begin{array}{cc}\sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2}\end{array}\right]$
(b)

We find the image of usual basis E:
$L(1,0)=(0,1)$
$L(0,1)=(1,0)$
$[L]_{E}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(c)

We are given the image of usual basis E :
$L(1,0)=(3,5)$
$L(0,1)=(7,-2)$
$[L]_{E}=\left[\begin{array}{cc}3 & 7 \\ 5 & -2\end{array}\right]$
(d)

We're given a non-standard basis $S=\{(1,1),(1,2)\}$. The change of basis matrix for S is

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

with inverse

$$
\begin{gathered}
P^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
L\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right]=-1\left[\begin{array}{l}
1 \\
1
\end{array}\right]+4\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{gathered}
$$

and

$$
L\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-4
\end{array}\right]=14\left[\begin{array}{l}
1 \\
1
\end{array}\right]-9\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

To find $[L]_{S}$ we had to convert the image vectors into the S coordinates above, using the matrix P^{-1} [equivalent to our convenience step]. From the results above we get:

$$
[L]_{S}=\left[\begin{array}{cc}
-1 & 14 \\
4 & -9
\end{array}\right]
$$

To get $[L]_{E}$, the matrix representation with respect to the standard basis, we use the relationship that $[L]_{S}=P^{-1}[L]_{E} P$. So $[L]_{E}$ is given by:
$[L]_{E}=P[L]_{S} P^{-1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}-1 & 14 \\ 4 & -9\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}3 & 5 \\ 7 & -4\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 18 & -11\end{array}\right]$
Note: We weren't actually asked for $[L]_{S}$ is this problem, so you could have saved effort by observing that we didn't really need to find the S coordinates of the image vectors. You could simply have worked with the matrix $P[L]_{S}$, which appears in the second last line of above. In effect we calculated

$$
P \cdot P^{-1}\left[\begin{array}{cc}
3 & 5 \\
7 & -4
\end{array}\right] \cdot P^{-1}
$$

when we could have calculated directly:

$$
\left[\begin{array}{cc}
3 & 5 \\
7 & -4
\end{array}\right] \cdot P^{-1}
$$

which has two less matrix products.

Problem 6.40

(a)
$[A]_{E}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(b)
$[A]_{E}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
(c)
$[A]_{E}=\left[\begin{array}{ccc}2 & -7 & -4 \\ 3 & 1 & 4 \\ 6 & -8 & 1\end{array}\right]$

Problem 6.41

We use 6.37(c):

$$
P=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 3 & 5
\end{array}\right], P^{-1}=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
5 & -5 & 2 \\
-3 & 3 & -1
\end{array}\right]
$$

(a)

$$
\begin{aligned}
& A=[A]_{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& B=P^{-1} A P=\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & -5 & -10 \\
0 & 3 & 6
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{gathered}
A=[A]_{E}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
B=P^{-1} A P=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 2 & 3 \\
1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(c)

$$
\begin{aligned}
& A=[A]_{E}=\left[\begin{array}{ccc}
2 & -7 & -4 \\
3 & 1 & 4 \\
6 & -8 & 1
\end{array}\right] \\
& B=P^{-1} A P=\left[\begin{array}{ccc}
15 & 65 & 104 \\
-49 & -219 & -351 \\
29 & 130 & 208
\end{array}\right]
\end{aligned}
$$

Problem 6.42

(a)
$A=[L]_{E}=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 3 & 2 \\ 1 & 5 & 2\end{array}\right]$
(b)

Since the basis $S=\{(1,1,0),(1,2,3),(1,3,5)\}$, the transition matrix between E and S is:

$$
P=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 3 & 5
\end{array}\right] \text {, and } P^{-1}=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
5 & -5 & 2 \\
-3 & 3 & -1
\end{array}\right]
$$

and hence, $B=[L]_{S}=P^{-1}[L]_{E} P=\left[\begin{array}{ccc}0 & 0 & 0 \\ 2 & 14 & 22 \\ 0 & -5 & -8\end{array}\right]$
Note: The method of slide 50 (or algorithm 6.1 in the text) can also be employed to solve part b, and the answer in the textbook is not correct.

