
Linear Algebra, Spring 2005

Solutions

May 4, 2005

Solution to 1.51

(a) −−→PQ = Q− P = (1,−6,−5)− (2, 3,−7) = (−1,−9, 2)

(b) −−→PQ = Q− P = (3,−5, 2,−4)− (1,−8,−4, 6) = (2, 3, 6,−10)

Solution to 1.52

(a) The coefficients of the equation of the hyperplane H are the components of the normal

vector. The given normal vector is u = (2, 3,−5, 6), therefore the equation for hyperplane

H will be of the form

2x + 3y − 5z + 6t = k.

As P (1, 2,−3, 2) lies on the hyperplane, we substitute the value of P in the equation of the

hyperplane and solve for k.

k = 2(1) + 3(2)− 5(−3) + 6(2) = 35

Thus, the equation of the hyperplane H is

2x + 3y − 5z + 6t = 35

Note: the variables x, y, z, t could have been chosen to be x1, x2, x3, x4 as in the book.

(b) The hyperplane H is parallel to the hyperplane given by the equation 2x1−3x2 +5x3−

7x4 = 4, The two parallel hyperplanes will have identical normal vectors and their equations

will be same except for a different constant value. The equation for the hyperplane H can
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be written as:

2x1 − 3x2 + 5x3 − 7x4 = k

Using the fact P (3,−1, 2, 5) lies in the hyperplane, we solve for k.

k = 2(3)− 3(−1) + 5(2)− 7(5) = −16

Thus, the equation for the hyperplane H is

2x1 − 3x2 + 5x3 − 7x4 = −16

Solution to 1.55

(a) Since normal N = 3i−4j+5k, the plane’s equation will be in the form 3x−4y+5z = k

where k is a constant to be determined.

Using the fact P (1, 2,−3) lies in the plane, we solve for k.

k = 3(1)− 4(2) + 5(−3) = −20

The equation of the plane H is:

3x− 4y + 5z = −20

(b) Since the plane, H, is parallel to 4x + 3y − 2z = 11, they should have identical normal

vectors with a different constant. The plane H will have the equation

4x + 3y − 2z = k

where k is a constant to be determined.

Using the fact Q(2,−1, 3) lies on the plane, we solve for k.

k = 4(2) + 3(−1)− 2(3) = −1

The equation of the plane H is:

4x + 3y − 2z = −1

(c) Extra part: Find the distance from Q to the plane H.

Ans. Using the formula on slide 34 (unit V), the distance from Q(2,−1, 3) to the plane in

(a) with equation 3x− 4y + 5z + 20 = 0 is:

D =
|3(2)− 4(−1) + 5(3) + 20|√

32 + (−4)2 + 52

= |45|/
√

50 = 9
√

2/2
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The distance to the plane H in part (b) is zero, since Q lies on the plane.

Solution to 1.62

u = (2, 1, 3), v = (4,−2, 2), w = (1, 1, 5)

(a) u× v =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

2 1 3

4 −2 2

∣∣∣∣∣∣∣∣∣ = (2 + 6,−(4− 12),−4− 4) = (8, 8,−8)

(b) u× w =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

2 1 3

1 1 5

∣∣∣∣∣∣∣∣∣ = (5− 3,−(10− 3), 2− 1) = (2,−7, 1)

(c) v × w =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

4 −2 2

1 1 5

∣∣∣∣∣∣∣∣∣ = (−10− 2,−(20− 2), 4 + 2) = (−12,−18, 6)

Note: There is a typo in the book for parts a and c.

Solution to 1.64

(a) v × w =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

1 2 3

1 −1 2

∣∣∣∣∣∣∣∣∣ = (4 + 3,−(2− 3),−1− 2) = (7, 1,−3)

The above vector is orthogonal to vectors v and w. To get a unit orthogonal vector u we

need to normalize it.

u = 1√
(7)2 + (1)2 + (−3)2

(7, 1,−3) = 1√
59

(7, 1,−3)

(b) v × w =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

3 −1 2

4 −2 −1

∣∣∣∣∣∣∣∣∣ = (1 + 4,−(−3− 8),−6 + 4) = (5, 11,−2)

The above vector is orthogonal to v and w, but it is not a unit vector. We need to normalize

the vector to obtain u.

u = 1√
(5)2 + (11)2 + (−2)2

(5, 11,−2) = 1√
150

(5, 11,−2)
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Note: This can alternatively be written as 1√
150

(5i + 11j− 2k)

Solution to 7.64

A polynomial of degree ≤ 2 in the vector subspace W will take the form f(t) = at2 + bt+ c.

By definition, if the inner product of 〈f, h〉 = 0, then f and h are orthogonal. Hence:

〈f, h〉 = 0

0 =
∫ 1

0
f(t)h(t)dt

0 =
∫ 1

0
(at2 + bt + c)(2t + 1)dt

0 =
∫ 1

0
{2at3 + 2bt2 + 2ct + at2 + bt + c}dt

0 =
∫ 1

0
2at3dt +

∫ 1

0
t2(2b + a)dt +

∫ 1

0
t(2c + b)dt +

∫ 1

0
cdt

0 =
2at4

4

∣∣∣∣∣
1

0

+
t3(2b + a)

3

∣∣∣∣∣
1

0

+
t2(2c + b)

2

∣∣∣∣∣
1

0

+ ct|10

0 =
a

2
+

(2b + a)
3

+
(2c + b)

2
+ c

0 =
5a

6
+

7b

6
+ 2c

0 = 5a + 7b + 12c

Therefore, all the polynomials (in the form at2 + bt + c) in the subspace W must conform

to the above equation. As well, dimW = 2.

let a = 7, b = −5, c = 0, then f1(t) = 7t2 − 5t

let a = 12, b = 0, c = −5, then f2(t) = 12t2 − 5

Therefore, the subspace W is spanned by {7t2 − 5t, 12t2 − 5}

Solution to 7.66

Let w = (a, b, c, d, e) be a vector in the subspace W (which is orthogonal to u1 and u2).

Then we require 〈w, u1〉 = 0 and 〈w, u2〉 = 0.

〈w, u1〉 = a + b + 3c + 4d + e = 0
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〈w, u2〉 = a + 2b + c + 2d + e = 0

Reducing the two equations gives:

a + b + 3c + 4d + e = 0

b− 2c− 2d = 0

So b = 2c + 2d and a = −5c− 6d− e with free variables c, d, and e.

Solution is:

(a, b, c, d, e) = (−5c− 6d− e, 2c + 2d, c, d, e)

= c(−5, 2, 1, 0, 0) + d(−6, 2, 0, 1, 0) + e(−1, 0, 0, 0, 1)

Therefore, {(−5, 2, 1, 0, 0), (−6, 2, 0, 1, 0), (−1, 0, 0, 0, 1)} forms a basis for W .

Solution to 7.67

w = (1,−2,−1, 3).

(a) To find the orthogonal basis, find a nonzero solution of x− 2y − z + 3t = 0.

And one such solution is w1 = (0, 0, 3, 1).

Now find a nonzero solution of the system: x− 2y − z + 3t = 0, 3z + t = 0

and w2 = (0, 5,−1, 3) is one solution.

Next find a nonzero solution for the system: x− 2y − z + 3t = 0, 3z + t = 0, 5y − z + 3t = 0

w3 = (14, 2, 1,−3) is one solution.

{w1, w2, w3} = {(0, 0, 3, 1), (0, 5,−1, 3), (14, 2, 1,−3)} forms an orthogonal basis for w⊥.

(b) The orthonormal basis is given by normalizing the basis vectors of the orthogonal basis.{
1√
10

(0, 0, 3, 1), 1√
35

(0, 5,−1, 3), 1√
210

(14, 2, 1,−3)
}

5



Solution to 7.68

(a) u1 = (1, 1, 2, 2), u2 = (0, 1, 2,−1) and let w = (a, b, c, d)

〈w, u1〉 = 0 = a + b + 2c + 2d

〈w, u2〉 = 0 = b + 2c− d

b = −2c + d and a = −3d. The two free variables are c and d. Therefore,

w = (−3d,−2c + d, c, d) = d(−3, 1, 0, 1) + c(0,−2, 1, 0)

We require an orthogonal basis for W (i.e. {w1, w2} a basis as well as 〈w1, w2〉 = 0). Start

with w1 = (0,−2, 1, 0), then w2 = d(−3, 1, 0, 1) + c(0,−2, 1, 0). Therefore, we need to find

c and d such that 〈w1, w2〉 = 0

〈w1, w2〉 = 〈(0,−2, 1, 0), d(−3, 1, 0, 1) + c(0,−2, 1, 0)〉 = 0

d(−2) + c(5) = 0

5c = 2d

Pick d = 5 and c = 2, then w2 = 5(−3, 1, 0, 1) + 2(0,−2, 1, 0) = (−15, 1, 2, 5)

Therefore, an orthogonal basis for W is {w1, w2} = {(0,−2, 1, 0), (−15, 1, 2, 5)}

Alternate Solution

Use Gram-Schmidt applied to {w1, w2} any basis, say w1 = (−3, 1, 0, 1) and w2 = (0,−2, 1, 0)

v1 = w1 = (−3, 1, 0, 1)

v2 = w2 − proj(w2, v1) = (0,−2, 1, 0)− 〈w2, v1〉
〈v1, v1〉

v1

v2 = (0,−2, 1, 0) +
2
11

(−3, 1, 0, 1)

11v2 = 11(0,−2, 1, 0) + (−6, 2, 0, 2)

= (−6,−20, 11, 2)

Therefore {v1, 11v2} = {(−3, 1, 0, 1), (−6,−20, 11, 2)} form an orthogonal basis.

(b) Normalize the basis from above [first choice]

{w1, w2} = {(0,−2, 1, 0), (−15, 1, 2, 5)}

‖w1‖ =
√

(−2)2 + (1)2 =
√

5 and

‖w2‖ =
√

(−15)2 + (1)2 + (2)2 + (5)2 =
√

255
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Therefore, an orthonormal basis for W is { 1√
5
(0,−2, 1, 0), 1√

255
(−15, 1, 2, 5)}

Solution to 7.69

(a) For the vectors to form an orthogonal set in R4, each pair must be orthogonal:

u1 · u2 = (1)(1) + (1)(1) + (1)(−1) + (1)(−1) = 0

u1 · u3 = (1)(1) + (1)(−1) + (1)(1) + (1)(−1) = 0

u1 · u4 = (1)(1) + (1)(−1) + (1)(−1) + (1)(1) = 0

u2 · u3 = (1)(1) + (1)(−1) + (−1)(1) + (−1)(−1) = 0

u2 · u4 = (1)(1) + (1)(−1) + (−1)(−1) + (−1)(1) = 0

u3 · u4 = (1)(1) + (−1)(−1) + (1)(−1) + (−1)(1) = 0

Orthogonal sets are automatically linearly independent, so the four given vectors must be

a basis.

(b) If v = c1u1 + c2u2 + c3u3 + c4u4 then ci = 〈v, ui〉
〈ui, ui〉

c1 = 〈v, u1〉
〈u1, u1〉

= 1
4(1 + 3− 5 + 6) = 5

4

c2 = 〈v, u2〉
〈u2, u2〉

= 1
4(1 + 3 + 5− 6) = 3

4

c3 = 〈v, u3〉
〈u3, u3〉

= 1
4(1− 3− 5− 6) = −13

4

c4 = 〈v, u4〉
〈u4, u4〉

= 1
4(1− 3 + 5 + 6) = 9

4

Therefore, v = 1
4 [5, 3,−13, 9]S

(c) As above with v = (a, b, c, d)

c1 = 1
4〈v, u1〉 = 1

4(a + b + c + d)

c2 = 1
4〈v, u2〉 = 1

4(a + b− c− d)

c3 = 1
4〈v, u3〉 = 1

4(a− b + c− d)

c4 = 1
4〈v, u4〉 = 1

4(a− b− c + d)

Therefore, v = 1
4 [a + b + c + d, a + b− c− d, a− b + c− d, a− b− c + d]S

(d) Note: ‖u1‖ = ‖u2‖ = ‖u3‖ = ‖u4‖ =
√

12 + 12 + 12 + 12 =
√

4 = 2

So each normalized vector would be ûi = (1/2)ui where i = 1, 2, 3, 4.
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Solution to 7.74

(b) Compute 〈v, w〉 = 1− 6 + 7 + 8 = 10 and ‖w‖2 = (1 + 4 + 49 + 16) = 70. Then

c =
〈v, w〉
〈w,w〉

=
10
70

=
1
7

and

proj(v, w) = 〈v, ŵ〉ŵ = cw =
1
7
(1,−2, 7, 4)

(c)

c =
〈v, w〉
〈w,w〉

=
∫ 1
0 t3dt + 3

∫ 1
0 t2dt∫ 1

0 t2dt + 6
∫ 1
0 tdt + 9

∫ 1
0 dt

=
t4

4

∣∣∣1
0
+ t3

∣∣1
0

t3

3

∣∣∣1
0
+ 3t2|10 + 9t|10

=
1
4 + 1

1
3 + 3 + 9

=
5
4
37
3

=
15
148

and

proj(v, w) = 〈v, ŵ〉ŵ = cw =
15
148

(t + 3)

Solution to 7.75

(a) Use the Gram-Schmidt algorithm:

w1 = v1 = (1, 1, 1, 1)

w2 = v2 − proj(v2, w1)

= v2 − 〈v2, ŵ1〉ŵ1

= v2 −
〈v2, w1〉
〈w1, w1〉

w1

= (1,−1, 2, 2)− 4
4
(1, 1, 1, 1)

= (0,−2, 1, 1)
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w′
3 = v3 − proj(v3, w1)− proj(v3, w2)

= v3 − 〈v3, ŵ1〉ŵ1 − 〈v3, ŵ2〉ŵ2

= v3 −
〈v3, w1〉
〈w1, w1〉

w1 −
〈v3, w2〉
〈w2, w2〉

w2

= (1, 2,−3,−4)− −4
4

(1, 1, 1, 1)− −11
6

(0,−2, 1, 1)

=
(

12
6

,
−4
6

,
−1
6

,
−7
6

)
Choose w3 = 6w′

3 = (12,−4,−1,−7) to clear fractions. {w1, w2, w3} form an orthogonal

basis of U .

Normalize the orthogonal basis vectors {w1, w2, w3} to obtain an orthonormal basis {u1, u2, u3}.

We have ‖w1‖2 = 4, ‖w2‖2 = 6, and ‖w3‖2 = 210. So the orthonormal basis is

u1 =
1
2
(1, 1, 1, 1)

u2 =
1√
6
(0,−2, 1, 1)

u3 =
1√
210

(12,−4,−1,−7)

(b) The original vectors are not an orthogonal set, so we should use the orthogonal basis

for U constructed in part (a): {w1, w2, w3} to calculate the projection of v = (1, 2,−3, 4)

onto U . First find the Fourier coefficients of v on each of the orthogonal vectors:

k1 =
〈v, w1〉
〈w1, w1〉

=
(1, 2,−3, 4) · (1, 1, 1, 1)

4
= 4/4 = 1

k2 =
〈v, w2〉
〈w2, w2〉

=
(1, 2,−3, 4) · (0,−2, 1, 1)

6
= −3/6 = −1/2

k3 =
〈v, w3〉
〈w3, w3〉

=
(1, 2,−3, 4) · (12,−4,−1,−7)

210
= −21/210 = −1/10

Then

proj(v, U) = k1w1 + k2w2 + k3w3 = 1(1, 1, 1, 1)− 1
2
(0,−2, 1, 1)− 1

10
(12,−4,−1,−7) =

1
5
(−1, 12, 3, 4)

Note: There is typo in the text answer
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Solution to 7.76

(a) Since {u1, u2} is an orthogonal set, we first find the Fourier coefficients of v on each of

the orthogonal vectors:

k1 =
〈v, u1〉
〈u1, u1〉

=
(1, 2, 3, 4, 6) · (1, 2, 1, 2, 1)
(1, 2, 1, 2, 1) · (1, 2, 1, 2, 1)

=
22
11

= 2

k2 =
〈v, u2〉
〈u2, u2〉

=
(1, 2, 3, 4, 6) · (1,−1, 2,−1, 1)

(1,−1, 2,−1, 1) · (1,−1, 2,−1, 1)
=

7
8

The projection of v = (1, 2, 3, 4, 6) onto W is then given by constructing the projections

onto each of the components u1 and u2:

w = proj(v,W ) = k1u1 + k2u2 = 2(1, 2, 1, 2, 1) +
7
8
(1,−1, 2,−1, 1) =

1
8
(23, 25, 30, 25, 23)

Note: There is typo in the text answer.

(b) {v1, v2} is not an orthogonal set, so first we need to find an orthogonal basis for W .

Apply the Gram-Schmidt algorithm to {v1, v2}.

w1 = v1 = (1, 2, 1, 2, 1)

w2 = v2 −
〈v2, w1〉
〈w1, w1〉

w1 = (1, 0, 1, 5,−1)− 11
11

(1, 2, 1, 2, 1) = (0,−2, 0, 3,−2)

Now we can calculate the projection of v = (1, 2, 3, 4, 6) onto W by constructing the pro-

jections onto each of the orthogonal vectors w1 and w2.

Find the Fourier coefficients of v on each of the orthogonal vectors:

k1 =
〈v, w1〉
〈w1, w1〉

=
(1, 2, 3, 4, 6) · (1, 2, 1, 2, 1)
(1, 2, 1, 2, 1) · (1, 2, 1, 2, 1)

=
22
11

= 2

k2 =
〈v, w2〉
〈w2, w2〉

=
(1, 2, 3, 4, 6) · (0,−2, 0, 3,−2)

(0,−2, 0, 3,−2) · (0,−2, 0, 3,−2)
=
−4
17

Then

proj(v,W ) = k1w1 + k2w2 = 2(1, 2, 1, 2, 1)− 4
17

(0,−2, 0, 3,−2) =
1
17

(34, 76, 34, 56, 42)
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Solution to 7.77

Following the hint - which gives you an orthogonal basis for P2 obtained in problem 7.22

- we find the Fourier coefficients of f(t) = t3 with respect to w1 = 1, w2 = 2t − 1 and

w3 = 6t2 − 6t + 1.

k1 =
〈f, w1〉
〈w1, w1〉

=

∫ 1

0
t3dt∫ 1

0
dt

=
t4

4

∣∣∣1
0

t|10
=

1
4

k2 =
〈f, w2〉
〈w2, w2〉

=

∫ 1

0
t3(2t− 1)dt∫ 1

0
(2t− 1)2dt

=

∫ 1

0
(2t4 − t3)dt∫ 1

0
(4t2 − 4t + 1)dt

=

(
2t5

5 − t4

4

)∣∣∣1
0(

4t3

3 − 2t2 + t
)∣∣∣1

0

=
3
20
1
3

=
9
20

k3 =
〈f, w3〉
〈w3, w3〉

=

∫ 1

0
t3(6t2 − 6t + 1)dt∫ 1

0
(6t2 − 6t + 1)2dt

=

∫ 1

0
(6t5 − 6t4 + t3)dt∫ 1

0
(36t4 − 72t3 + 48t2 − 12t + 1)dt

=

(
t6 − 6t5

5 + t4

4

)∣∣∣1
0(

36t5

5 − 18t4 + 16t3 − 6t2 + t
)∣∣∣1

0

=
1
20
1
5

=
1
4

Therefore, proj(f,W ) = 1
4(1) + 9

20(2t− 1) + 1
4(6t2 − 6t + 1) = 3

2 t2 − 3
5 t + 1

20

Solution to 7.94

Apply the Gram-Schmidt algorithm. Calculate:

w1 = u1 = (1, i, 1)

w′
2 = u2 − proj(u2, w1)

= u2 − 〈u2, ŵ1〉ŵ1

= u2 −
〈u2, w1〉
〈w1, w1〉

w1
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= (1 + i, 0, 2)−
[
(1 + i, 0, 2) · (1, i, 1)

(1, i, 1) · (1, i, 1)

]
(1, i, 1)

= (1 + i, 0, 2)− 3 + i

3
(1, i, 1)

w2 = 3w′
2

= (3 + 3i, 0, 6)− (3 + i,−1 + 3i, 3 + i)

= (2i, 1− 3i, 3− i)

The vectors {w1, w2} form an orthogonal basis for the space spanned by the given vectors.

Normalize vectors w1 and w2 to obtain an orthonormal basis {ŵ1, ŵ2}.We have

‖w1‖2 = 1 + |i|2 + 1 = 3

‖w2‖2 = |2i|2 + |1− 3i|2 + |3− i|2 = 4 + (1 + 9) + (9 + 1) = 24

So the orthonormal basis {ŵ1, ŵ2} =
{

1√
3
(1, i, 1), 1√

24
(2i, 1− 3i, 3− i)

}

Solution to 7.81

Practically speaking the difficult part in constructing an orthogonal matrix is getting mu-

tually orthogonal rows. Once you have that matrix it is simple enough to normalize each

row. We’ll proceed to get the orthogonality first, in which case the fractions (1
3 etc) are an

unnecessary nuisance so we’ll drop them.

The desired matrix P is supposed to be symmetric, so it is in the form

P =


1 2 2

2 a b

2 b c


where the a, b, c unknowns have to be found. For mutually orthogonal rows we require:

2 + 2a + 2b = 0

2 + 2b + 2c = 0

4 + ab + bc = 0
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The first two equations are linear [non-homogeneous] in the three unknowns a, b, c. The

augmented matrix of the system is already in reduced form [the constants are put on the

right hand side of the equations of course]: 1 1 0 −1

0 1 1 −1


Using back-substitution we get b = −c − 1 and a = −b − 1 = −(−c − 1) − 1 = c. So the

general solution is (a, b, c) = (c,−c− 1, c) any c.

Now we can substitute these values into the third [non-linear] orthogonality equation above:

0 = 4 + ab + bc = 4 + c(−c − 1) + (−c − 1)c = c2 + c − 2 = (c − 1)(c + 2) = 0. So we

have two possible solutions: c = 1 and c = −2. These choices correspond to values of

(a, b, c) = (1,−2, 1) and (−2, 1,−2). The possible choices for the [non-normalized] P matrix

are therefore:

P ′
1 =


1 2 2

2 1 −2

2 −2 1

 P ′
2 =


1 2 2

2 −2 1

2 1 −2


To complete the problem and construct orthogonal matrices we have to normalize the rows

of P ′
1 and P ′

2. Therefore we have

P1 =
1
3


1 2 2

2 1 −2

2 −2 1

 P2 =
1
3


1 2 2

2 −2 1

2 1 −2



Solution to 9.56b

From the characteristic equation

det(A− λI) =

∣∣∣∣∣∣ 4− λ −1

−1 4− λ

∣∣∣∣∣∣
= (4− λ)2 − (−1)2 = 16− 8λ + λ2 − 1 = λ2 − 8λ + 15 = (λ− 3)(λ− 5)

Accordingly, λ = 3 and λ = 5 are eigenvalues of A.
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Subtract λ = 3 on the diagonal of A, we have

A− 3I =

 1 −1

−1 1

, corresponding to

 x − y = 0

−x + y = 0
or x− y = 0

One free variable, and v1 = (1, 1) is a nonzero solution.

Subtract λ = 5 down the diagonal of A, we have

A− 5I =

 −1 −1

−1 −1

, corresponding to

 −x − y = 0

−x − y = 0
or x + y = 0

One free variable, and v2 = (1,−1) is a nonzero solution.

Since A is symmetric, the eigenvectors v1 and v2 are orthogonal.

Normalize v1 and v2 to get the unit vectors:

v̂1 = (1/
√

2, 1/
√

2) and v̂2 = (1/
√

2,−1
√

2)

P is the orthogonal matrix whose columns are the unit vectors v̂1 and v̂2 respectively:

P =

 1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 and D = P−1AP =

 3 0

0 5


Solution to 9.56c

From the characteristic equation

det(A− λI) =

∣∣∣∣∣∣ 7− λ 3

3 −1− λ

∣∣∣∣∣∣
= (7− λ)(−1− λ)− (3)2 = −7− 6λ + λ2 − 9 = λ2 − 6λ− 16 = (λ− 8)(λ + 2)

Accordingly, λ = 8 and λ = −2 are eigenvalues of A.

Subtract λ = 8 on the diagonal of A, we have

A− 8I =

 −1 3

3 −9

, corresponding to

 −x + 3y = 0

3x − 9y = 0
or x− 3y = 0

One free variable, and v1 = (3, 1) is a nonzero solution.
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Subtract λ = −2 down the diagonal of A, we have

A− (−2)I =

 9 3

3 1

, corresponding to

 9x + 3y = 0

3x + y = 0
or 3x + y = 0

One free variable, and v2 = (1,−3) is a nonzero solution.

Since A is symmetric, the eigenvectors v1 and v2 are orthogonal.

Normalize v1 and v2 to get the unit vectors:

v̂1 = (3/
√

10, 1/
√

10) and v̂2 = (1/
√

10,−3
√

10)

P is the orthogonal matrix whose columns are the unit vectors v̂1 and v̂2 respectively:

P =

 3/
√

10 1/
√

10

1/
√

10 −3/
√

10

 and D = P−1AP =

 8 0

0 −2


Solution to 9.57a

From the characteristic equation:

det(B − λI) =

∣∣∣∣∣∣∣∣∣
−λ 1 1

1 −λ 1

1 1 −λ

∣∣∣∣∣∣∣∣∣
−−−−−→
R2 −R1

∣∣∣∣∣∣∣∣∣
−λ 1 1

1 + λ −λ− 1 0

1 1 −λ

∣∣∣∣∣∣∣∣∣
= (1 + λ)

∣∣∣∣∣∣∣∣∣
−λ 1 1

1 −1 0

1 1 −λ

∣∣∣∣∣∣∣∣∣
−−−−−→
C1 + C2 (1 + λ)

∣∣∣∣∣∣∣∣∣
1− λ 1 1

0 −1 0

2 1 −λ

∣∣∣∣∣∣∣∣∣
= −(1 + λ)

∣∣∣∣∣∣ 1− λ 1

2 −λ

∣∣∣∣∣∣ = −(1 + λ)(λ2 − λ− 2) = (1 + λ)2(2− λ)

Accordingly, the eigenvalues of B are λ = −1 (multiplicity 2) and λ = 2 (multiplicity 1).

Find an orthogonal basis of each eigenspace. Subtract λ = −1 down the diagonal of B:

B − (−1)I =


1 1 1

1 1 1

1 1 1

, corresponding to


x + y + z = 0

x + y + z = 0

x + y + z = 0

or x + y + z = 0
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The system has two independent solutions. One solution is v1 = (1,−1, 0).

Let the second solution be v2 = (a, b, c), which is orthogonal to v1. It should satisfy the

following two conditions:  a + b + c = 0

a− b = 0

One such solution is v2 = (1, 1,−2)

For the eigenvalue λ = 2, subtract λ = 2 down the diagonal of B:

B−2I =


−2 1 1

1 −2 1

1 1 −2

, corresponding to


−2x + y + z = 0

x − 2y + z = 0

x + y − 2z = 0

or

 x− y = 0

x− z = 0

One free variable and v3 = (1, 1, 1) is a nonzero solution.

Since B is symmetric, the eigenvector v3 is orthogonal to eigenvectors v1 and v2.

The maximal orthogonal set of eigenvectors S = {v1, v2, v3}

Normalize v1, v2 and v3 to get the orthonormal basis:

v̂1 = v1/
√

2 = (1/
√

2,−1/
√

2, 0)

v̂2 = v2/
√

6 = (1/
√

6, 1/
√

6,−2/
√

6)

v̂3 = v3/
√

3 = (1/
√

3, 1/
√

3, 1/
√

3)

P is the orthogonal matrix whose columns are v̂1, v̂2, v̂3:

P =


1/
√

2 1/
√

6 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3

 and D = P−1BP =


−1 0 0

0 −1 0

0 0 2

.
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