Linear Algebra, Spring 2005

Solutions

May 4, 2005

Question 9.45

(a)
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}2-\lambda & -3 \\ 2 & -5-\lambda\end{array}\right|=\lambda^{2}+3 \lambda-4=(\lambda+4)(\lambda-1)$
The roots $\lambda=-4$ and $\lambda=1$ are the eigenvalues of A

Subtract $\lambda=-4$ down the diagonal of A, we have
$M=A-(-4) I=\left[\begin{array}{ll}6 & -3 \\ 2 & -1\end{array}\right]$, corresponding to $\left\{\begin{array}{l}6 x-3 y=0 \\ 2 x-y=0\end{array}\right.$
The system has only one free variable, and $v_{1}=(1,2)$ is a nonzero solution. v_{1} represents an eigenvector belonging to and spanning the eigenspace of $\lambda=-4$ Subtract $\lambda=1$ down the diagonal of A, we have
$M=A-I=\left[\begin{array}{ll}1 & -3 \\ 2 & -6\end{array}\right]$, corresponding to $\left\{\begin{aligned} x-3 y & =0 \\ 2 x-6 y & =0\end{aligned}\right.$
The system has only one free variable, and $v_{2}=(3,1)$ is a nonzero solution.
v_{2} represents an eigenvector belonging to and spanning the eigenspace of $\lambda=1$.
A nonsingular matrix P is a matrix whose columns are v_{1} and v_{2}.
$P=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$

The diagonal matrix $D=P^{-1} A P=\left[\begin{array}{rr}-4 & 0 \\ 0 & 1\end{array}\right]$
The diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors appearing in P
(b)
$\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}2-\lambda & 4 \\ -1 & 6-\lambda\end{array}\right|=\lambda^{2}-8 \lambda+16=(\lambda-4)^{2}$
The equation has two equal roots, $\lambda=4$. These are the eigenvalues of A
Subtract $\lambda=4$ down the diagonal of B, we have
$M=B-4 I=\left[\begin{array}{ll}-2 & 4 \\ -1 & 2\end{array}\right]$, corresponding to $\left\{\begin{aligned}-2 x+4 y & =0 \\ -x+2 y & =0\end{aligned}\right.$
The system has only one free variable, and $v=(2,1)$ is a nonzero solution There is only one independent eigenvector, so B can not be diagonalized.

Question 9.46

(a)
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}2-\lambda & -1 \\ -2 & 3-\lambda\end{array}\right|=\lambda^{2}-5 \lambda+4=(\lambda-4)(\lambda-1)$
The roots $\lambda=4$ and $\lambda=1$ are the eigenvalues of A

Subtract $\lambda=4$ down the diagonal of A, we have
$M=A-(4) I=\left[\begin{array}{ll}-2 & -1 \\ -2 & -1\end{array}\right]$, corresponding to $\left\{\begin{array}{l}-2 x-y=0 \\ -2 x-y=0\end{array}\right.$
The system has only one free variable, and $v_{1}=(1,-2)$ is a nonzero solution. Thus v_{1} represents an eigenvector belonging to and spanning the eigenspace of $\lambda=4$

Subtract $\lambda=1$ down the diagonal of A, we have
$M=A-I=\left[\begin{array}{rr}1 & -1 \\ -2 & 2\end{array}\right]$, corresponding to $\left\{\begin{aligned} x-y & =0 \\ -2 x+2 y & =0\end{aligned}\right.$
The system has only one free variable, and $v_{2}=(1,1)$ is a nonzero solution. v_{2} represents an eigenvector belonging to and spanning the eigenspace of $\lambda=1$

(b)

Let P be the matrix whose columns are v_{1} and v_{2}.
$P=\left[\begin{array}{rr}1 & 1 \\ -2 & 1\end{array}\right]$ and $P^{-1}=\left[\begin{array}{rr}1 / 3 & -1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]$
The diagonal matrix $D=P^{-1} A P=\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]$
The diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors appearing in P
(c)

Using the diagonal factorization $A=P D P^{-1}$, and $4^{6}=4096$ and $1^{6}=1$, $A^{6}=P D^{6} P^{-1}=\left[\begin{array}{rr}1 & 1 \\ -2 & 1\end{array}\right]\left[\begin{array}{rr}4096 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 / 3 & -1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]=\left[\begin{array}{rr}1366 & -1365 \\ -2730 & 2731\end{array}\right]$
$f(4)=45$ and $f(1)=6$. Hence
$f(A)=\operatorname{Pf}(D) P^{-1}=\left[\begin{array}{rr}1 & 1 \\ -2 & 1\end{array}\right]\left[\begin{array}{rr}45 & 0 \\ 0 & 6\end{array}\right]\left[\begin{array}{rr}1 / 3 & -1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]=\left[\begin{array}{rr}19 & -13 \\ -26 & 32\end{array}\right]$
(d)

Here $\left[\begin{array}{rr} \pm 2 & 0 \\ 0 & \pm 1\end{array}\right]$ are square roots of D. Therefore the positive square root of A is
$B=P \sqrt{D} P^{-1}=\left[\begin{array}{rr}1 & 1 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 / 3 & -1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]=\left[\begin{array}{rr}4 / 3 & -1 / 3 \\ -2 / 3 & 5 / 3\end{array}\right]$

Question 9.48

(a)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
3 & -5-\lambda & 3 \\
6 & -6 & 4-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
2+\lambda & -2-\lambda & 0 \\
6 & -6 & 4-\lambda
\end{array}\right| \\
& =(2+\lambda)\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
1 & -1 & 0 \\
6 & -6 & 4-\lambda
\end{array}\right|=(2+\lambda)\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
1 & -1 & 0 \\
0 & 0 & 4-\lambda
\end{array}\right| \\
& =(2+\lambda)(4-\lambda)\left|\begin{array}{cc}
1-\lambda & -3 \\
1 & -1
\end{array}\right|=(2+\lambda)^{2}(4-\lambda)
\end{aligned}
$$

Accordingly, $\lambda=4$ and $\lambda=-2$ are eigenvalues of A.
Subtract $\lambda=4$ down the diagonal of A, we have

$$
\begin{aligned}
& M=A-4 I=\left[\begin{array}{rrr}
-3 & -3 & 3 \\
3 & -9 & 3 \\
6 & -6 & 0
\end{array}\right], \text { corresponding to } \\
& \left\{\begin{array} { r }
{ - 3 x - 3 y + 3 z = 0 } \\
{ 3 x - 9 y + 3 z = 0 } \\
{ 6 x - 6 y }
\end{array} \text { or } \left\{\begin{array}{rr}
-2 x & z=0 \\
x-y & =0
\end{array}\right.\right.
\end{aligned}
$$

Only one free variable, and $v_{1}=(1,1,2)$ is a nonzero solution
Subtract $\lambda=-2$ down the diagonal of A, we have
$M=A+2 I=\left[\begin{array}{ccc}3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6\end{array}\right]$, corresponding to

$$
\left\{\begin{array}{l}
3 x-3 y+3 z=0 \\
3 x-3 y+3 z=0 \\
6 x-6 y+6 z=0
\end{array} \text { or } x-y+z=0\right.
$$

Two free variables, and $v_{2}=(1,1,0)$ and $v_{3}=(1,0,-1)$ are linearly independent solutions

There are altogether 3 independent eigenvectors which can generate the P, so A can be diagonalized
(b)

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\left|\begin{array}{ccc}
3-\lambda & -1 & 1 \\
7 & -5-\lambda & 1 \\
6 & -6 & 2-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
3-\lambda & -1 & 1 \\
4+\lambda & -4-\lambda & 0 \\
6 & -6 & 2-\lambda
\end{array}\right| \\
& =(4+\lambda)\left|\begin{array}{rrr}
3-\lambda & -1 & 1 \\
1 & -1 & 0 \\
6 & -6 & 2-\lambda
\end{array}\right|=(4+\lambda)\left|\begin{array}{rrr}
3-\lambda & -1 & 1 \\
1 & -1 & 0 \\
0 & 0 & 2-\lambda
\end{array}\right| \\
& =(4+\lambda)(2-\lambda)\left|\begin{array}{rr}
3-\lambda & -1 \\
1 & -1
\end{array}\right|=-(2-\lambda)^{2}(4+\lambda)
\end{aligned}
$$

Accordingly, $\lambda=-4$ and $\lambda=2$ are eigenvalues of B.
Subtract $\lambda=-4$ down the diagonal of B, we have
$M=B+4 I=\left[\begin{array}{lll}7 & -1 & 1 \\ 7 & -1 & 1 \\ 6 & -6 & 6\end{array}\right]$, corresponding to
$\left\{\begin{array}{l}7 x-y+z=0 \\ 7 x-y+z=0 \\ 6 x-6 y+6 z=0\end{array}\right.$ or $\begin{cases}x & =0 \\ x-y+z & =0\end{cases}$
One free variable, and $v_{1}=(0,1,1)$ is a nonzero solution
Subtract $\lambda=2$ down the diagonal of B, we have

$$
\begin{aligned}
& M=B-2 I=\left[\begin{array}{lll}
1 & -1 & 1 \\
7 & -7 & 1 \\
6 & -6 & 0
\end{array}\right] \text {, corresponding to } \\
& \left\{\begin{array} { r l }
{ x - y + z } & { = 0 } \\
{ 7 x - 7 y + z } & { = 0 } \\
{ 6 x - 6 y } & { = 0 }
\end{array} \left\{\begin{array}{rl}
x-y & =0 \\
& z=0
\end{array}\right.\right.
\end{aligned}
$$

One free variable, and $v_{2}=(1,1,0)$
There are altogether 2 independent eigenvectors, so B can not be diagonalized
(c)

$$
\begin{aligned}
\operatorname{det}(C-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 2 & 2 \\
1 & 2-\lambda & -1 \\
-1 & 1 & 4-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & 2 & 2 \\
0 & 3-\lambda & 3-\lambda \\
-1 & 1 & 4-\lambda
\end{array}\right| \\
& =(3-\lambda)\left|\begin{array}{ccc}
1-\lambda & 2 & 2 \\
0 & 1 & 1 \\
-1 & 1 & 4-\lambda
\end{array}\right|=(3-\lambda)\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1 & 1 \\
-1 & 1 & 4-\lambda
\end{array}\right| \\
& =(3-\lambda)(1-\lambda)\left|\begin{array}{cc}
1 & 1 \\
1 & 4-\lambda
\end{array}\right|=(3-\lambda)^{2}(1-\lambda)
\end{aligned}
$$

Accordingly, $\lambda=1$ and $\lambda=3$ are eigenvalues of C.
Subtract $\lambda=1$ down the diagonal of C, we have

$$
\begin{aligned}
& M=C-I=\left[\begin{array}{rrr}
0 & 2 & 2 \\
1 & 1 & -1 \\
-1 & 1 & 3
\end{array}\right] \text {, corresponding to } \\
& \left\{\begin{array} { r }
{ 2 y + 2 z = 0 } \\
{ x + y - z = 0 } \\
{ - x + y + 3 z = 0 }
\end{array} \text { or } \left\{\begin{array}{rr}
y+z=0 \\
x+2 y & =0
\end{array}\right.\right.
\end{aligned}
$$

One free variable, and $v_{1}=(2,-1,1)$ is a nonzero solution

Subtract $\lambda=3$ down the diagonal of C, we have
$M=C-3 I=\left[\begin{array}{rrr}-2 & 2 & 2 \\ 1 & -1 & -1 \\ -1 & 1 & 1\end{array}\right]$, corresponding to
$x-y-z=0$
Two free variables, and $v_{2}=(1,1,0)$ and $v_{3}=(1,0,1)$ are linearly independent solutions

There are altogether 3 independent eigenvectors which can generate the P, so C can be diagonalized.

Question 9.49

(a)
$T=\left[\begin{array}{ll}3 & 3 \\ 1 & 5\end{array}\right]$
$\operatorname{det}(T-\lambda I)=\left|\begin{array}{cc}3-\lambda & 3 \\ 1 & 5-\lambda\end{array}\right|=\lambda^{2}-8 \lambda+12=(\lambda-2)(\lambda-6)$
The roots of the equation give the eigenvalues, therefore the eigenvalues are $\lambda=2$ and $\lambda=6$.

Subtract $\lambda=2$ down the diagonal of T, we have
$M=T-2 I=\left[\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right]$, corresponding to $\left\{\begin{array}{l}x+3 y=0 \\ x+3 y=0\end{array}\right.$
The system has only one free variable, and $v_{1}=(3,-1)$ is a nonzero solution, an eigenvector corresponding to eigenvalue $\lambda=2$.

Subtract $\lambda=6$ down the diagonal of T, we have
$M=T-6 I=\left[\begin{array}{rr}-3 & 3 \\ 1 & -1\end{array}\right]$, corresponding to $\left\{\begin{aligned}-3 x+3 y & =0 \\ x-y & =0\end{aligned}\right.$
The system has only one free variable, and $v_{2}=(1,1)$ is a nonzero solution, an eigenvector corresponding to eigenvalue $\lambda=6$.

The two vectors v_{1} and v_{2} form the basis for the eigenspace.
(b)
$T=\left[\begin{array}{cc}3 & -13 \\ 1 & -3\end{array}\right]$
$\operatorname{det}(T-\lambda I)=\left|\begin{array}{cc}3-\lambda & -13 \\ 1 & -3-\lambda\end{array}\right|=\lambda^{2}+4=(\lambda-2 i)(\lambda+2 i)=0$
Since the linear operators are defined on real space, complex eigenvalues are not allowed. Therefore there are no eigenvalues.

Question 9.51

$\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left(A^{T}-(\lambda I)^{T}\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}(A-\lambda I)$
So the eigenvalues, which are the roots of this equation are the same for A and A^{T}.

An example for which A and A^{T} have different eigenvectors is:
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$.
The two eigenvalues are 1 and 2 . The eigenvectors for A are $(1,0)$ and $(1,1)$.
The two eigenvectors of A^{T} are $(1,-1)$ and $(0,1)$.

Question 9.53

(a)

$$
\begin{aligned}
T^{n} v & =T^{n-1} T v=T^{n-1} \lambda v=T^{n-1} v \lambda \\
& =T^{n-2} T v \lambda=T^{n-2} \lambda v \lambda=T^{n-2} v \lambda^{2} \\
& =T^{n-3} T v \lambda^{2}=T^{n-3} \lambda v \lambda^{2}=T^{n-3} v \lambda^{3} \\
& =\cdots \\
& =T v \lambda^{n-1}=\lambda v \lambda^{n-1}=\lambda^{n} v
\end{aligned}
$$

(b)

Represent the polynomial $f(t)$ by $a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, therefore

$$
\begin{aligned}
f(T) v & =\left(a_{n} T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0}\right) v \\
& =a_{n} T^{n} v+a_{n-1} T^{n-1} v+\cdots+a_{1} T v+a_{0} v \\
& =a_{n} \lambda^{n} v+a_{n-1} \lambda^{n-1} v+\cdots+a_{1} \lambda v+a_{0} v \\
& =\left(a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}\right) v \\
& =f(\lambda) v
\end{aligned}
$$

Question 9.54

$(G \circ F)(G(v))=G(F(G(v)))=G((F \circ G)(v))=G(\lambda v)=\lambda G(v)$.
Therefore, λ is an eigenvalue of the composition $G \circ F$ with corresponding eigenvector $G(v)$, if λ is an eigenvalue of the composition $F \circ G$ with eigenvector v.

